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Abstract

This paper quantifies the option value arising from sequential schooling decisions made in

the presence of uncertainty and learning about academic ability. College attendance has option

value since enrolled students have the option, but not obligation, to continue in school after

learning their aptitude and tastes. I estimate that option value accounts for 14% of the total

value of the opportunity to attend college for the average high school graduate and is greatest

for moderate-aptitude students. Students’ ability to make decisions sequentially in response

to new information increases welfare and also makes educational outcomes less polarized by

background.
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I Introduction

Since the pioneering work of Becker and Mincer, the application of investment theory to the study

of individuals’ education decisions has become commonplace. People are assumed to weigh short-

term costs against future benefits and choose the schooling level that maximizes welfare. This static

framework abstracts from uncertainty and suggests that few people should drop out if the marginal

earnings gain from graduating is high, as it appears to be. In reality, schooling decisions involve

much uncertainty, outcomes often deviate from expectations, and dropout is common.1 Despite its

salience and its importance to investment generally, uncertainty has historically received relatively

little attention in the study of education.2

This paper examines the consequences of educational uncertainty using a structural model in

which schooling decisions are sequential and academic ability is learned through grades. Since

psychic schooling costs depend on ability, people refine their expectations of them over time.

This set-up is analogous to Pindyck’s (1993) model of "technical" cost uncertainty, where the

cost of completing a long-term project is revealed only as investment proceeds. Option value

arises in this context since students have the option, but not obligation, to continue in school after

learning their aptitude and tastes. My estimates suggest option value is substantial for the average

high school graduate and is greatest for moderate-ability students. Their decisions are particularly

sensitive to new information, so they derive the most value from learning it. The ability to condition

sequential education decisions on new information increases welfare and also makes educational

outcomes less polarized by background. Option value also rationalizes dropout in the presence of

the substantial degree or "sheepskin" effects.

One implication is that policies that restrict dynamic flexibility curtail welfare most for those

closest to the decision margin. School tracking, for example, will have the greatest impact on the

welfare of students who are most uncertain about their fit with vocational or academic tracks. The

general setup can be used to examine a wide range of phenomenon - job choices, marital decisions,

health investments - in which decisions are sequential, partially irreversible, and responsive to new

1For instance, only 51% of 1982 high school seniors who intended to earn a Bachelor’s degree had done so by

1992, while 16% of those planning to earn less than a four-year degree eventually did according to the National Center

for Educational Statistics, 2004 Digest of Educational Statistics Table 307.
2Uncertainty is at the heart of a burgeoning body of very recent empirical work on schooling, as surveyed in

Heckman, Lochner, and Todd (2006). In the investment literature, most relevant here is the work related to real

options collected in Dixit and Pindyck (1994).
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information.

This paper quantifies the importance of uncertainty and computes option value through simu-

lations of a structural dynamic model, which is estimated using postsecondary transcript data on a

recent cohort of U.S. men from the National Educational Longitudinal Study (NELS). The model

encompasses enrollment decisions and grade outcomes over four years as well as the decision to

start at a two-year (community) or four-year college. I simulate educational outcomes and welfare

using the dynamic model and compare this to the counterfactual scenario wherein individuals com-

mit to an educational outcome before enrolling in college. The welfare difference between these

two scenarios is the value of the option to respond to the information received during college.3

I assume that enrollment reveals three pieces of information. The first is collegiate aptitude,

which influences the persistent psychic costs (or benefits) from school attendance. Enrollment pro-

vides information in the form of course grades which are used to predict the future desirability of

school. Non-persistent shocks to the relative cost (or benefit) of schooling are the second. These

shocks combine many factors - getting ill, having a parent lose a job, having a winning football

team - that are not expected to persist over time. The final source of uncertainty is about labor mar-

ket opportunities associated with higher levels of education. Expected lifetime income increases

with education but the specific realization is unknown ex-ante. Individuals learn of these oppor-

tunities only if they actually enroll.4 Since decisions can be conditioned on all this information,

acquiring it has value.

Estimates suggest that uncertainty about college completion is empirically important; unan-

ticipated taste shocks are half as large as the returns to the final year of college and dwarf direct

tuition fees at public colleges. There is also evidence of learning about ability - over time people

put increased weight on course grades in their continuation decisions. Because of this uncertainty,

the average high school graduate would be willing to pay $14,900 (in 1992 dollars) to maintain the

ability to decide sequentially, with moderate-ability students (for whom educational outcomes are

most uncertain) willing to pay even more (up to $25,000 in 1992 dollars). Option value accounts

3In order to isolate the value of new information, I adopt Dixit and Pindyck’s (1994) definition of option value,

which nets out the continuation value that arises even with no uncertainty if returns are nonlinear. Heckman, Lochner,

and Todd (2006), Heckman and Navarro (2007), and Heckman and Urzua (2008) define option value inclusive of this

continuation value. See Section IIC.
4Such preference and labor market shocks are common features in the dynamic structural models of Keane and

Wolpin (1997) and others.
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for 14% of the total value of the opportunity to attend college among all high school graduates

and 32% for those closer to the enrollment margin. Approximately 60% of this value comes from

the information received in the first year of college. The ability to make decisions sequentially

increases both enrollment and dropout, but also closes a quarter of the welfare gap between the

first-best scenario (individuals maximize welfare ex-post) and the static one (individuals commit

to outcomes ex-ante).

Though most previous treatment of this subject has been theoretical, recent empirical work

also underscores the importance of schooling uncertainty and option value.5 For instance, Altonji

(1993) finds large differences between mean ex-ante and ex-post returns to starting college and

Cunha, Heckman, and Navarro (2005) conclude that 30% of people would change their school-

ing decisions if they had perfect information. Chen (2008) estimates that 80% of potential wage

variation reflects uncertainty and this share varies across education levels. Uncertainty is clearly

important empirically.

This paper is in the tradition of the multi-period dynamic structural schooling models exem-

plified by Keane and Wolpin (1997), but with two key contributions. First, I augment their basic

model to include learning about ability through course grades, similar to Arcidiacono (2004). Psy-

chic costs (which depend on ability) are very important to schooling decisions, but their nature

is not well understood.6 Heckman and Navarro (2007) discuss identification of a general model

which permits learning about serially-persistent attributes (such as psychic costs), but leave esti-

mation for future work. Learning about academic ability is one source of option value not present

in previous empirical work.7

Second, I examine the properties and consequences of option value using a fully estimated

dynamic structural model. Heckman, Lochner, and Todd (2006) caution that rates of return to

schooling depend on the empirical importance of option value, yet previous work ignores this.

They provide preliminary estimates of it using a calibrated model with exogenous dropout, con-

5Weisbrod (1962) was the first to point out that education has option value. Also see the theoretical work of

Comay, Melnick, and Pollatschek (1973), Dothan and Williams (1981), and Manski (1989).
6See Heckman, Lochner, and Todd (2006) for a discussion of recent evidence on the importance of psychic costs.
7Arcidiacono (2004) estimates the returns to various majors after controlling for dynamic selection, using course

grades as a signal of subject-specific unobserved ability. His model and estimates could be used to quantify the option

value arising from learning about subject-specific ability, as is also examined in Altonji (1993). Since he only examines

students admitted to four-year colleges, however, his estimates cannot be used to investigate the importance of learning

to enrollment decisions more generally.
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cluding that much more work is needed on the subject.8 This paper uses a simple theoretical model

to show how uncertainty creates option value and influences enrollment decisions, particularly for

those at the margin. These properties are quantified using the estimated structural model, in or-

der to examine the empirical importance of option value to educational attainment, welfare, and

policy.9

The rest of the paper proceeds as follows. Section II uses a simple two-period model to analyze

how option value arises in the presence of educational uncertainty. This section states the definition

of option value used in this study and discusses several of its properties. Section III presents the

full empirical model and discusses issues related to its estimation. Estimation results are presented

in Section IV, which also includes a discussion of model fit. Section V uses the estimated model

to calculate the option value created by the sequential nature of schooling decisions. Section VI

concludes by identifying directions for future work as well as other applications.

II Modeling Educational Investment

A The college dropout puzzle

The static model of educational investment widely used in the literature is inconsistent with high

levels of college dropout if degree wage effects are large. Consider a simple version of the tradi-

tional model first developed by Becker (1964) as discussed in Card (1999). Individuals are assumed

to maximize lifetime utility, which is a function of lifetime earnings and the (monetary and psy-

chic) cost of schooling, U = ln y(S)−c(S), where c(S) is some increasing and convex function of

years of schooling. If y(S) and c(S) are continuous and differentiable, then the optimal schooling

level (S∗i ) satisfies the first order condition
dyi(S

∗
i )

dS
1

yi(S∗i )
=

dci(S
∗
i )

dS
. The benefit of an additional year

of schooling (higher earnings) just offsets the additional costs (delayed earnings and psychic costs)

at the optimum.

However, the returns to college appear to be highly non-linear with substantial degree or

8Work in progress by Heckman and Urzua (2008) is also quantifying option value using an estimated dynamic

model of schooling.
9Reduced form techniques are inadequate for quantifying option value, but they can be used to explore its impor-

tance to various decisions. For instance, Eide and Waehrer (1998) examine whether students consider the likelihood

of graduate school (and accompanying wage gains) when choosing a college major choice.

5



"sheepskin effects."10 Figure I presents estimates of the earnings production function for male high

school graduates from the National Longitudinal Survey of Youth 1979 (NLSY79). The present

discounted value of lifetime earnings minus tuition jumps discretely at four years of college, but

is unrelated to schooling attainment until then. If psychic schooling costs are smooth, individuals

should bunch at this discontinuity and very few people should fall in the intermediate ranges. Fig-

ure I also plots the distribution of postsecondary schooling attainment for men aged 35, who have

presumably all completed their schooling. Consistent with the traditional model, zero (39% of the

sample) and four years (17%) of college are the most frequent schooling outcomes. Ten percent

attend college for two years, which partially reflects Associate’s degree attainment. Contrary to

the theory, however, there are many people whose schooling level puts them on the flat part of the

earnings production function. Fully 28% of high school graduates drop out before finishing their

fourth year of college. From the perspective of traditional human capital theory where individu-

als optimally choose their schooling level to equate the known marginal costs and benefits of an

additional year, these individuals seemingly present an unexplained puzzle.

However, dropout can be rationalized when schooling decisions are sequential and the feasi-

bility and desirability of degree completion is unknown ex-ante. As pointed out by Altonji (1993),

uncertainty about the difficulty of graduating can interact with nonlinearities in the ex-post returns

to schooling to create option value. Students with schooling outcomes on the flat part of the earn-

ings curve may therefore be people for whom option value made enrollment worthwhile, even

though the return was negative ex-post.

B A simple dynamic model of college enrollment and completion

Now consider a simple dynamic model with two periods, which correspond to the first and second

half of college.11 Utility is in dollars, individuals are assumed to be risk-neutral, and time dis-

counting is ignored. At period one, individuals decide whether or not to enroll in college. Entering

the labor market immediately provides zero utility but enrollment provides an individual-specific

net return to the first half of college (εi,1) which is known throughout. At period two, those who

10There is a substantial literature that documents the existance of nonlinearities (or "sheepskin" effects) in the

returns to education. See Hungerford and Solon (1987), Jaeger and Page (1996), Park (1999), and Heckman, Lochner,

and Todd (2006).
11A similar two-period setup was used by Manski (1989), Altonji (1993), Taber (2000), and Arcidiacono (2004).
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enrolled decide whether or not to graduate. Dropping out provides no further utility but graduat-

ing provides additional utility of ρεi,1 + εi,2, where εi,2 is revealed at the start of period two and

Cov[εi,1, εi,2] = 0. Individual-specific returns to the second half of college have a component that

is known when the initial enrollment decision is being made (ρεi,1) and one that is only learned

after enrollment (εi,2). This specification allows the returns in each period to be correlated, so

first period returns provide information about the desirability of attending the second period. For

expositional simplicity, I normalize mean returns to zero in each period, E[εi,1] = E[εi,2] = 0.12

I focus on the case where returns are non-negatively correlated, ρ ≥ 0. Figure II illustrates the

structure and payoffs of the model.

Static model. First consider the fully static case where individuals make a single schooling

decision between the three schooling outcomes (no enrollment, dropout, complete) at period one.

Since they have no knowledge of εi,2, they set it to its expected value when evaluating the payoffs.

The decision rules of individual i are thus:

Enroll if : εi,1 + max {0, ρεi,1} > 0

Complete if : ρεi,1 > 0

Individuals will enroll and complete if εi,1 > 0 and not enroll otherwise. Here the static model

predicts no dropouts; anyone for whom enrollment is desirable will also want to complete college.

To see this, note that payoffs are 0, εi,1, and εi,1(1+ρ) for non-enrollees, dropouts, and completers,

respectively, so completing college dominates dropping out if ρ > 0. The presence of non-linear

returns (e.g. E[εi,2] = r > E[εi,1]) will only magnify this result. With negatively correlated returns

(ρ < 0), the static model predicts that some people will drop out but all who do will have positive

ex-post payoffs.13

Dynamic model. Now consider the dynamic case, where individuals only have to make the

enrollment decision at period 1. People will enroll if the expected utility from doing so is greater

than zero, where expectations are taken over the distribution of the unknown second-period returns

12The model can easily incorporate nonlinearities in returns by setting E[εi,2] = r > E[εi,1]. Nonlinearities are

not necessary to create option value, but simply highlight option value’s importance in explaining dropout. The model

I actually estimate uses the empirical returns to each year of college, which permit nonlinearities.
13This is a key difference between the static and dynamic models. While people who drop-out in the static model

will have positive ex-post payoffs, some drop-outs in the dynamic context will have negative ex-post payoffs.
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εi,2. The model is solved starting with the completion decision in period two, when all parameters

are known. The decision rules of individual i are thus:

Enroll if : εi,1 + E[max{0, ρεi,1 + εi,2}] > 0

Complete if : ρεi,1 + εi,2 > 0

The enrollment decision incorporates not only the immediate payoffs (εi,1) but also the expec-

tation of future ones (E[max{0, ρεi,1 + εi,2}]). Now the enrollment and completion decisions are

not completely coupled since completion can be conditioned on the realized value of εi,2. This

property has several implications for the level of enrollment, dropout, and welfare, to which I now

turn.

C The option value of college enrollment

A key feature of the dynamic model where dropout is endogenous is that the expected net utility

gain from completing college is truncated at zero. If εi,2 is sufficiently adverse, then individuals

will choose to drop out rather than assume this adverse shock. By providing information about the

desirability of completion, enrollment thus has value beyond the utility provided in the first period

directly. This section defines the option value created by uncertainty and discusses the implications

of option value for educational outcomes and welfare.

Enrollment is valuable because it leads to outcomes people may want to commit to ex-ante and

because it provides information about the desirability of completion. The value of the opportunity

to enroll can be decomposed into these two parts.

Vdynamic(εi,1) = Vstatic(εi,1) +OptionV alue(εi,1) (1)

Vdynamic(εi,1) is the value of the opportunity to enroll for individual i (as a function of εi,1)

in the dynamic setting where individuals can drop out if continuation ends up being undesirable.

Vstatic(εi,1) is the value of the enrollment opportunity in the static case, where individuals commit

to an educational outcome ex-ante. Define εd,1 as the critical value above which enrollment is
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optimal in the dynamic setting and εs,1 analogously in the static setting.14

From above we have Vdynamic(εi,1) = max (0, εi,1 + E[max{0, ρεi,1 + εi,2}]) and Vstatic(εi,1) =

max (0, εi,1 + max{0, E [ρεi,1 + εi,2]}). Thus option value can be written as:

OptionV alue(εi,1) = max (0, εi,1 + E[max{0, ρεi,1 + εi,2}])︸ ︷︷ ︸
Vdynamic(εi,1)

(2)

− max (0, εi,1 + max{0, E [ρεi,1 + εi,2]})︸ ︷︷ ︸
Vstatic(εi,1)

This definition of option value nets out the continuation value arising from nonlinear returns

with no uncertainty, consistent with Dixit and Pindyck (1994). If completing the first year of

college is required in order to enter the second year, then the first year has continuation value.

Continuation value may cause people with negative first year returns to enroll if second year re-

turns are sufficiently high. However, if second period returns are uncertain and future decisions

can be conditioned on new information, then even individuals who expect negative returns in both

periods ( εi,1 < 0) may find it optimal to enroll. In this paper, I focus on this latter effect. Heck-

man, Lochner, and Todd (2006), Heckman and Navarro (2007), and Heckman and Urzua (2008)

define option value inclusive of the continuation value, which is appropriate given their interest in

estimating total returns.15 While my estimates of the opportunity to attend college includes both

continuation and option value, this paper primarily focuses on the latter. Proposition 1 describes

the properties of option value as defined in this paper.

Proposition 1 (The properties of option value).

a. OptionV alue(εi,1) is non-negative for all εi,1.

b. OptionV alue(εi,1) is greatest for individuals at the enrollment margin in the static model.

c. OptionV alue(εi,1) is increasing and the critical value εd,1 is decreasing in the level of un-

certainty (variance of εi,2).

14Here εs,1 = 0 and εd,1 solves Vdynamic(εi,1) = 0.
15Roughly speaking, this distinction is a matter of how to treat the extent to which the option is "in the money"

when it is granted. In the above notation, Heckman, Lochner, and Todd (2006) would define option value as :

OV (εi,1) = max (0, εi,1 + E[max{0, ρεi,1 + εi,2}])−max (0, εi,1)
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d. OptionV alue(εi,1) reduces the dependence of educational outcomes on εi,1.

e. The option to drop out improves welfare.

Proof. See Appendix 1.

Figure III illustrates these features of option value in this context through simulations. The left

panel plots the value of the enrollment opportunity for a range of values of εi,1 and for different

levels of uncertainty about εi,2. The dotted line is the value of the enrollment opportunity in the

static case, Vstatic(εi,1). This value is zero for those who choose not to enroll (εi,1 < 0) and then

increases linearly with εi,1. The dashed lines plot the value of the enrollment opportunity in the dy-

namic situation where εi,2 is uncertain, Vdynamic(εi,1), for two different levels of uncertainty about

εi,2. The vertical distance between the dashed and dotted lines represents the OptionV alue(εi,1).

For comparison, the solid line plots the average welfare in the full information counterfactual sce-

nario where individuals can make education decisions to maximize welfare ex-post, after learning

εi,2. Figure III confirms that OptionV alue(εi,1) is increasing in σ. In contrast to the standard

view that uncertainty reduces welfare if agents are risk averse, here uncertainty combined with

the ability to respond dynamically actually increases welfare by increasing the option value. As

OptionV alue(εi,1) increases due to increased uncertainty about εi,2, enrollment becomes desir-

able to more people. This can also be seen in Figure III: εd,1 is where the dashed lines intersect

the horizontal axis. Even without nonlinearities, option value will make enrollment desirable to

people for whom the first half of college is unproductive (εi,1 < 0). In Figure III, the vertical dis-

tance between the solid line and the others represents the welfare loss resulting from incomplete

information about εi,2. The ability to drop out after learning εi,2 (the dashed line) closes much of

this welfare gap.

The sources of the welfare gains coming from the ability to drop out can be seen more clearly

by looking at educational outcomes under the various scenarios. The right panel of Figure III plots

the fraction enrolling in (Panel A) and completing college (Panel B) under the static, dynamic,

and full-information scenarios described above. Individuals in Group A receive no schooling in

either the static or dynamic settings, though some (with high εi,2) would enroll and graduate if they

knew εi,2 with certainty. Individuals in Group B are compelled to enroll despite their negative first

period returns because of the informational value. Though many will eventually drop out, others

10



will graduate and the costs of experimenting are not too high. This group receives considerably

more education in the dynamic setting. Interestingly, a small subset of these individuals actually

continue to graduation due to the sunk-cost nature of their period 1 investment, despite this being

suboptimal ex-post. Group C benefits from the dynamic setting because they have the option to

drop out if continuation is undesirable. In the static model, all commit to graduating, even if it is

undesirable ex-post. Option value increases the welfare of this group by reducing their educational

attainment.

D Implications for empirical work

A simple dynamic model of college enrollment and completion was motivated by the failure of the

static model to explain high rates of college dropout. In a dynamic setting, dropout occurs when

new information reveals that continuation is not desirable. The opportunity to drop out in response

to this information creates option value, which was shown to have important consequences for

educational outcomes and welfare. Specifically, option value increases the incentive to enroll,

particularly for those at the enrollment margin in the static model. Any model that ignores this

value will necessarily understate the incentive to enroll and mischaracterize the social desirability

of college dropout.

III Empirical Implementation

To characterize schooling uncertainty quantitatively, I estimate an empirical model that is a much

richer version of the basic model presented above. The empirical model describes enrollment

decisions and grade outcomes at four time periods and allows individuals to start at either a two-

year or four-year college. The model includes several sources of uncertainty. Like many dynamic

models, I include unanticipated shocks to the relative desirability of school and labor market entry

at each point in time. For example, receiving an unusually favorable outside job offer or getting

ill influences the relative desirability of schooling and work at a single period. These shocks are

assumed to be serially uncorrelated. The second source of uncertainty is about academic aptitude,

which influences taste for schooling throughout college. Students do not know for certain whether

they are a "B" or "C" college student until they enroll. Grades following enrollment provide a signal
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of this unobserved ability and students learn about their aptitude through their grades. This section

presents the key elements of the empirical model and discusses issues related to its estimation.

A complete description of the full model is contained in the Appendix, which also includes a

discussion of several important extensions.

A Data

The model is estimated on a panel of 2055 men participating in the National Educational Longi-

tudinal Study (NELS). NELS participants were first interviewed in 1988, while in 8th grade, then

again in 1990, 1992, 1994, and 2000. Complete college transcripts were obtained in 2000 for

most participants. The NELS transcript and survey data are used to construct the main variables

used in the analysis: college enrollment indicators, grade outcomes, and baseline characteristics.

I supplemented the NELS dataset with institutional characteristics obtained from the Integrated

Postsecondary Education Data System (IPEDS) 1992 Institutional Characteristics survey. For each

NELS individual, I merged on distance to the nearest two-year and four-year college (in miles) and

average tuition levels at public two-year and four-year colleges in each state.16

I define a time period as one academic year and classify individuals by years of continuous

college enrollment following high school graduation. Students are considered enrolled during year

t if they attempted at least six course units (approximately part-time status) at either a two-year or

four-year school in both Fall and Spring of the academic year. Since income measures as adults

do not appear in the NELS dataset, I estimate conditional expectations of lifetime income using

data from an earlier cohort, male high school graduates from the National Longitudinal Survey

of Youth 1979 (NLSY79). Using variables that are common in both the NLSY79 and the NELS

(such as high school GPA, parental education, AFQT, ethnicity, urban and region), I estimate the

parameters of a lifetime income equation using OLS and predict counterfactual lifetime income

for individuals in the NELS sample. Essentially, I assume that individuals in my sample look at

the experience of "similar" individuals twelve years older to form their income expectations. This

approach is similar to the "reference group expectations" referred to by Manski (1991).

16Characteristics of the specific schools students attend (e.g. tuition) is not used in this analysis. Average tuition

levels in each state are a more exogenous source of variation in the price of college than own-school tuition, which

varies considerably between public and private institutions and is endogenous. Tuition levels are set at their 1992

levels thoughout, assuming students don’t reoptimize in response to short-term tuition changes.
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I restrict the dataset to on-time high school graduates with complete information on key base-

line variables (high school GPA, AFQT, parents’ education, family income, distance to nearest

colleges) and complete college transcripts (unless no claim of college attendance). I also exclude

residents of Alaska, Hawaii, and the District of Columbia. After these restrictions the final dataset

contains 2055 men. Appendix 2 contains summary statistics and more details on how the dataset

was constructed. Though these restrictions reduce the sample considerably, the final unweighted

analysis sample is very similar to a nationally representative sample of the high school class of

1992. Appendix 3 describes the counterfactual lifetime income estimation procedure.

B Model description

I model schooling decisions in the four academic years after high school graduation. During the

first period individuals decide whether to start at a four-year or two-year college, which I refer to

as pathway choice, or to not enroll in college. The pathway chosen affects the level and timing of

direct schooling costs (which may differ across individuals) and unmodeled college amenities. At

each time period t an individual chooses whether to enter the labor market (receiving payoff uwi,t)

or continue in school for another year, receiving payoff usi,j,t in period t and the option to make an

analogous work-school decision in period t + 1, where j = 2, 4 denotes type of school (two-year

or four-year). After period two, students that started at a two-year college must attend a four-year

college if they want to continue in school. After period four, there are no more decisions to make

and all individuals enter the labor market. Figure IV depicts the structure of choices, information,

and payoffs in the full empirical model, where the individual subscripts have been omitted.

Utility is in dollars. The indirect utility from discontinuing school and entering the labor market

at period t equals the expected present discounted value of lifetime income from period t to age 62

(Incomei,t) plus a random component εwi,t. Note that t subscripts a decision period so it is collinear

with years of education in this model. Thus predicted lifetime income depends implicitly on years

of schooling, which is determined directly by when students leave school.

uwi,t = Incomei,t + εwi,t (3)

The expected indirect utility derived from attending school during year t, usi,j,t, depends linearly
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on a type-specific intercept (αm,j), expected unknown ability (Ai), direct tuition and commuting

costs, and a random component εsi,j,t. Distancei,j,t and Tuitioni,j,t vary by the type of school, so

individuals that start at a two-year school will pay community college tuition for the first two years

then four-year college tuition for their third and fourth years. The random shocks (εsi,j,t,ε
w
i,t) are

revealed to the individual prior to making the period t decision.

usi,j,t = α0,j + αm,j + αAEt[Ai]− (αDDistancei,j,t + Tuitioni,j,t) + εsi,j,t (4)

The term αAEt[Ai] captures the preference for school (in dollar terms) that covaries with its

expected difficulty.17 Individuals do not know Ai at any time, so they form expectations of it

when making their period-t decisions. I assume that individuals form rational expectations of their

performance in school.18 In period one, I make the parametric assumption that the conditional

expectation of Ai on baseline characteristics depends linearly on a type-specific intercept (γm),

high school grade point average (HSgpai), percentile score on the AFQT, and whether a parent

has a college degree (ParBAi):

E1[Ai] = E[Ai|Xi] = γ0 + γm + γGHSgpai + γTAFQTi + γPParBAi (5)

At the end of each year, students enrolled in college learn their performance during that year,

which is measured by the college grade point average (on a four-point scale) during period t. I

assume that grades provide a noisy signal of Ai: gi,t = Ai + εgi,t. Grade shocks are assumed to

be serially uncorrelated and normally distributed: εgi,t ∼ N(0, σGt). With learning, individuals

update their belief about Ai in response to new information received through grades. I make the

parametric assumption that the conditional expectation of Ai is a weighted average of the uncon-

ditional expectation and students’ cumulative grade point average. The weights are parameters to

17This specification can be motivated by a model where the difficulty of year t is distributed around a fixed and

unobserved individual-specific mean, so Ai,t = Ai + εai,t. Individuals learn Ai,t after each year, but cannot separate

Ai from εai,t. If εai,t is mean zero and serially uncorrelated, then Et[Ai,t] = Et[Ai]. Also, since I have assumed risk

neutrality, the variance of εai,t has no impact on expected utility or decisions, so can be ignored.
18Stinebrickner and Stinebrickner (2008) have direct evidence that students are over-confident about their likely

performance in college. How students form expectations about college is ripe area for future research.
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be estimated.19

Et[Ai] = γXtE[Ai|Xi] + (1− γXt)
q=t−1∑
q=1

gi,q
t− 1

if t > 1 (6)

To permit a general structure of correlation between unobservable preferences and ability, I

specify that αm,j and γm come from a mass point distribution which describe the ability and

schooling preferences of M different types of individuals.20 γm measures the unobserved aca-

demic aptitude of people of "type" m and αm,j is their preference for school of type j. Type is

known to the individual throughout, but is unknown to the econometrician. Essentially, the spec-

ification permits the intercepts of academic performance and of indirect utility to each take on

three different values, corresponding to the three unobserved types. As a special case, I will also

estimate models with no unobserved heterogeneity, which assumes that all correlation between

preference for school and academic aptitude are captured linearly through αAEt[Ai]. u
s
i,j,1(·) rep-

resents the non-stochastic component of the indirect utility of attending school. Individuals know

baseline characteristics (Xi) as well as the first period shocks (εsi,2,1,εsi,4,1,εwi,1) when making the

initial enrollment decision, but learn future shocks and grade outcomes only after enrolling. All

other parameters of the model are known to the individual throughout.

At each period t , the individual maximizes the expected discounted value of lifetime utility by

choosing whether to discontinue schooling and receive uwi,t or continue school for at least one more

year. Solving the model consists of finding the value functions for each alternative at each point in

time: V s
i,2,t, V

s
i,4,t, and V w

i,t . These value functions take the following form:

V w
i,t = uwi,t (7)

V s
i,j,t = usi,j,t + βE

[
max

{
V w
i,t+1, V

s
i,j,t+1

}]
The decision problem can be solved for each individual by backwards recursion. In order to get

a closed form solution for the E [max {., .}] term, I assume these shocks are drawn from an Ex-

19This is an approximation of the normal learning model, which imposes that γXt =
(

1/σ2a
1/σ2a+(t−1)/σ2g

)
, where σ2a

is the variance of Ai and σ2g is the variance of (gi,t −Ai). Instead of imposing that the learning process follow this

structure, I estimate γXt and the variance of the residual gi,t − Et[Ai] as parameters.
20The use of a mass-point distribution to approximate the distribution of preferences known to the agent but un-

known to the econometrician is discussed by Heckman and Singer (1984) and is widely used in dynamic structural

work such as Keane and Wolpin (1997) and Eckstein and Wolpin (1999). Here I estimate models with up to three

points of support.
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treme Value Type I distribution with location and scale parameters zero and τ , respectively. The

derivation of these value functions is contained in the Appendix.

C Interpretation of parameters

The indirect utility functions
{
V s
i,j,t, V

w
i,t

}t=4

t=1
provide expressions for the relative desirability of

entering the labor market or continuing in school at time t. This relative value depends on a number

of primitive parameters. The direct and opportunity costs as well as financial returns are captured in

the terms Costi,t and Incomei,t. Their importance to educational decisions have been the topic of

much examination. Less frequently studied is the contribution of academic ability to continuation

decisions. This is captured by αA and the parameters of the grade function. I have modeled family

background and ability as influencing educational decisions primarily through expected scholastic

aptitude (grades). This model can be used to quantify the contribution of family background to

educational outcomes that operates through college academic performance. Family background

influences academic performance, which in turn influences educational decisions.

The value of enrollment is also influenced by the amount of uncertainty and the speed at which

it is revealed, as parameterized by τ and {γXt, σGt}
t=4
t=1. If τ is high, then preference shocks have a

high variance, which increases the value of college enrollment and continuation. Future decisions

take these preference shocks into account, so a greater variance increases the likelihood that either

the schooling or work shock will be high, thus increasing the option value.

Option value decreases with the variance of grade shocks (σGt). Since grades provide a noisy

signal of unobserved ability (which influences utility through academic performance), greater vari-

ance decreases the signal value of grade realizations and thus the option value created by the ability

to learn about aptitude through grades. If grades provided no signal value (either because they were

completely random or because there is no uncertainty about ability), the value of enrollment would

be diminished.

The temporal nature of learning about ability is parameterized by {γXt}
t=4
t=1. If academic abil-

ity is learned quickly, then γXt should decline rapidly at first then level off. If subsequent grade

shocks continue to provide new information about ability, γXt should continue to decline through-

out college. The normal learning model imposes that γXt follow a specific decreasing pattern over
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time.

D Estimation and identification

The parameters of the model are estimated with full information maximum likelihood using data

on the enrollment decisions, academic performance, and baseline characteristics of a panel of in-

dividuals. With no unobserved heterogeneity, individual i′s contribution to the likelihood function

is Li = L1
i · L2

i · L3
i , where:

Period 1: L1
i = Pr(Si,2,1 = 1)Si,2,1 Pr(Si,4,1 = 1)Si,4,1 Pr(Si,1 = 0)1−Si,1

Periods 2 to 4: L2
i =

4∏
t=2

Pr(Si,t = 1)Si,t Pr(Si,t = 0)1−Si,t (8)

Grades : L3
i =

4∏
t=1

Pr(gi,t)

where Si,2,1 and Si,4,1 indicate pathway choice in period 1 and Si,t is an indicator for enrollment in

either type of school during period t. With the extreme value assumption on the preference shocks

(which are unobserved to the econometrician), choice probabilities take the familiar logit form and

the likelihood of grade outcomes given by the normal probability density function.

When unobserved (to the econometrician) heterogeneity is included, the likelihood contribution

of individual i must be integrated over the joint distribution of γm and αm,j . Since this distribution

is assumed to have M mass points, the type-specific likelihood contribution must be summed over

the M possible types, weighted by the probability of being each type.

Li =

M∑
m=1

pmLim

where pm is the probability of being "type" m, which is a parameter to be estimated.

With no heterogeneity, there are 16 parameters to estimate: five in the utility function (α0,2,

α0,4, αA, αD, τ ) and eleven in the grade equations (γ0, γG, γT , γP , σG1, γX2, σG2, γX3, σG3, γX4,

σG4). Unobserved heterogeneity adds four parameters (αm,2, αm,4, γm, pm) for each additional

type.

The parameters in the utility function (α0,2, α0,4, αA, αD) are identified from the educational
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choices up to the scale parameter τ . For example, the difference in enrollment rates between

individuals with high expected grades and low expected grades but all else equal identifies the

ratio αA/τ . Since utility is in dollar units, τ is identified from variation in Tuitioni,t and Incomei,t

across individuals and across periods. Holding all other variables constant, the estimate of τ is the

magnitude of preference shocks that is needed to rationalize the proportions of people dropping out

in each year, given the financial costs and benefits from doing so and the parametric distribution

assumed on the shocks. For instance, if the financial return to completing a fourth year of college

is much higher than completing the third year, then more people should drop out before the third

year than the fourth. The magnitude of this enrollment difference identifies τ - if the dropout rates

are similar then the variance of preference shocks must be high ( τ must be large) to rationalize the

data. Cross-state tuition differences contribute to the identification of τ in the same way. It should

be noted that the estimate of τ will be affected by any bias in the estimate of the return to each

year of schooling. If the least squares estimated return to each year of school is biased upwards

by unobserved factors, then the estimate of τ will also be overstated. However, most IV and twins

estimates suggest that ability bias in OLS estimates is not too severe.21

The parameters of the grade function are identified primarily from the grade outcomes in the

typical manner, though the educational choices also help identify these parameters.

Parameters associated with unobserved heterogeneity are identified by common behavior which

is contrary to the model. For instance, there may be individuals with poor academic performance

but who still persist to graduation due to unmodeled parental pressure. If there are a sufficient

number of similar individuals, then a model that permits for this type of behavior will fit the data

better (i.e., have a higher likelihood). In practice, it is difficult to identify the discount factor β

separately from τ . In the current specification, I fix β at 0.95.22

21See Card (1999) for a review.
22I have estimated the model with β = 0.90 and the results are qualitatively similar. The estimate of the dollar value

of the option value decreases by one third reflecting a decrease in the estimated scale parameter τ , but the importance

of option value relative to the value of enrollment and welfare is unchanged.
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IV Estimation Results

A Parameter estimates

Table I provides estimates of the structural parameters. Columns (1) and (2) provide estimates from

a base model with no learning about academic aptitude while columns (3) and (4) provide estimates

from the full model described above. Both models are estimated with and without allowing for up

to three points of unobserved heterogeneity. Standard errors were computed by taking the inverse

of the numerical Hessian at the estimated parameter values.

In the model without learning, expectations about grade realizations are based exclusively on

baseline characteristics and type, so Et[Ai] = E[Ai|Xi, T ype] for all t. The parameter estimates

all have the expected signs and are statistically significant. Since utility is in units of dollars, these

estimates are immediately interpretable as the dollar value (in $100,000) associated with a one-

unit change in the independent variable. With no unobserved heterogeneity or learning (column

(1)), the estimates imply that four-year colleges have amenities valued at $32,300 over two-year

colleges. Expecting to do well in school is also valuable. Each additional grade point (e.g. going

from a C-student to a B-student) is equivalent to $70,700. Living 100 miles from a college is

equivalent to paying an additional $12,100 in tuition. A key parameter is τ , which parameterizes

the variance of the preference shocks. At the estimated parameters, the preference shocks have a

standard deviation of $65,500
(

= τ Π√
6

)
. As expected, the grade parameter estimates show a strong

positive correlation between academic performance and baseline characteristics such as academic

performance in high school, AFQT test scores, and parent’s education.

The estimate of αA in column (1) could be biased if people with high academic ability also have

a stronger preference for attending school, independent of the causal effect of aptitude on school-

ing ease. Column (2) addresses this concern by allowing for several different "unobserved types,"

each with an arbitrary correlation between schooling preference and academic aptitude. Permitting

unobserved heterogeneity improves model fit considerably. Relative to type 1 individuals, type 2

individuals (17% of sample) are higher ability (γtype2 > 0), but have a stronger dislike of 4-year

colleges (αS4
type2 < 0) and are neutral to two-year colleges. These individuals can be thought of as

good students from disadvantaged families. By contrast, type 3 individuals (36%) are lower ability

(γtype3 < 0), have a stronger preference for 4-year colleges (αS4
type3 > 0) and dislike two-year col-
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leges (αS2
type2 < 0), though this latter effect is not statistically significant. Incorporating unobserved

heterogeneity does not qualitatively change the other parameter estimates. However, the estimated

deviation of the preference shocks increases to $100,000. Consequently, the magnitude of the other

parameter estimates also increases. Interestingly, the relationship between expected academic abil-

ity and enrollment probabilities ( αA/τ ) changed little, increasing from 1.4 to 1.6 when unobserved

heterogeneity is permitted. The estimated variance of the grade shocks decreases because a greater

share of the performance variance is captured by baseline characteristics (including type).

Columns (3) and (4) present estimates from the full learning model presented in Section 3. The

parameter estimates are very similar to estimates from the no-learning model, both qualitatively

and quantitatively. With learning, individuals estimate future academic performance by calculating

a weighted average of performance predicted with baseline characteristics (including type) and cu-

mulative grade point average, where the weights (γx2, γx3, and γx4) are parameters to be estimated.

The normal learning model predicts that the weight placed on baseline characteristics should de-

crease with t ( γx1 is normalized to one), as should the residual grade variance (σgt). The estimates

in column (3), which do not control for unobserved heterogeneity, support this implication of the

normal learning model. The best predictor of year-two grades weighs baseline characteristics and

first-year grades approximately equally (48% vs. 52%). Fourth-year grades, however, are best

predicted by placing only 19% of the weight on baseline characteristics and 81% on three-year

cumulative grade point average.

Due to unobserved heterogeneity, however, these estimates can overstate the amount of learning

taking place. E[Ai|Xi] may not fully capture all information about future academic performance

available to individuals, so the increasing weight placed on cumulative academic performance may

simply capture the revelation of private information to the econometrician. Column (4) addresses

this concern (and the potential bias of αA/τ discussed earlier) by allowing for several different un-

observed types, each with different levels of academic aptitude, known ex-ante, and preferences for

two- and four-year school. The estimates in column (4), which allow for three different types, im-

ply that learning about academic ability continues to occur through the end of college. Controlling

for unobserved heterogeneity does not change the learning parameters much.23

23These results assume that I have specified the information set used by individuals correctly. If students possess

information about future grades beyond that modeled here, these estimates overstate the extent of uncertainty and

learning and understate the extent of hetergeneity. The methods presented in Cuhna, Heckman, and Navarro (2005)
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The types identified in the learning model are slightly different than those revealed in the non-

learning model. Relative to type 1, type 2 individuals (8% of the sample) have higher academic

aptitude, greater-than-average preference for two-year colleges, and less preference for four-year

colleges. Type 3 individuals (63%) reflect students with poor academic aptitude who have lower

than expected preference for two- and four-year schools. Accounting for unobserved heterogeneity

again increases τ and the scale of most other parameters, though the relationship between expected

academic ability and enrollment probabilities ( αA/τ ) changes little. The estimated deviation of

the preference shocks is about $82,000 in this preferred specification. The overall model fit also

improves when unobserved heterogeneity is permitted. I now discuss model fit more directly.

B Model fit

To examine model fit, I simulate the grade outcomes and educational choices of individuals in my

estimation sample 100 times and compare the predicted outcomes to the actual observed outcomes.

In this section I discuss simulations that use the preferred estimated parameter values, from model

(4) from Table I. In the Appendix, I also examine model fit for the models that do not incorporate

unobserved heterogeneity and learning simultaneously (models (1) to (3) in Table I). In general,

the preferred specification provides a much better fit of the data than the simpler models. I examine

model fit in two ways. First, I compare actual to predicted enrollment outcomes, including initial

pathway choice, dropout, and college completion. This comparison is also done by demographic

characteristics which are not explicitly incorporated in the model. I then examine the relationship

between grade outcomes and subsequent enrollment decisions. It should be noted that if the model

contained utility intercepts that differ over time, by school, and by academic performance, then

the moments presented below would not constitute a true test of "fit." Such a fully saturated and

calibrated model would fit the data perfectly. The model I employ is much more parsimonious, as

I discuss below.

Figure V compares the predicted enrollment decisions to the actual decisions made by individu-

als in the estimation sample. Overall, the model predictions fit the distribution of actual enrollment

decisions reasonably well considering how unsaturated the model is. Forty-five percent of indi-

viduals are predicted not to enroll, two percentage points below the actual share. Consequently,

could be used to distinguish between these two sources of variability.

21



enrollment in four-year colleges is over-predicted by three percent. The fraction of individuals

enrolling in two-year colleges is identical between actual and predicted. The goodness of initial

enrollment decision fit is not surprising since the model includes separate constants for two- and

four-year schools in the utility function (α0,j). If the parameters were estimated using only the

initial enrollment decision, these shares would fit exactly.

The fit of dropout behavior following initial enrollment decision is a better test of the ability

of the model to predict behavior. Since the utility intercepts do not vary over time, predicted dif-

ferential dropout between different periods is driven entirely by between-period differences in the

financial returns (lifetime earnings gain minus costs) and changes in expected academic perfor-

mance (Et[Ai]). Figure VI depicts the fraction of two- and four-year enrollments who drop out

in each year or graduate. There are two primary discrepancies between the model predictions and

actual outcomes. First, the model slightly underpredicts the fraction of people beginning at com-

munity college that drop out after one or three years and consequently over-predicts completion.

The second discrepancy is that the model over-predicts dropout after the first year among people

that start at a four-year college and consequently underpredicts four-year college graduation.

Figure VII compares actual and predicted enrollment shares by whether students come from

a high- or low-income family. Family income does not enter the model at all, so this is a pretty

strong test of model fit. Any correlation between family income and enrollment outcomes must

operate through the correlation between family income and the modeled background characteris-

tics (high school performance, AFQT, and parental education). Additionally, these characteristics

do not enter individuals’ preferences for school directly. Higher parental education, for instance,

increases academic aptitude, which in turn makes schooling more desirable. Higher parental edu-

cation also increases predicted lifetime income, which reduces individuals’ sensitivity to school-

ing costs. Nonetheless, the model still captures several important features of the data, namely the

strong positive correlation between family income, college enrollment, and degree completion.

Enrollment decisions and grades are related for several reasons. First, students with adverse

baseline characteristics (e.g., poor grades in high school) have low expected college aptitude, which

increases the disutility of school. Consequently, students with low expected academic performance

will be less likely to enroll and more likely to drop out if they do enroll. Second, if students learn

about the desirability of college through their grades, then students who persist to graduation will
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have consistently received high grades while those who dropped out will have received low grades.

Figure VIII displays the actual and simulated fraction of students that complete their fourth year

by their first-year grade point average. The overall slope and curvature of the grade-graduation

relationship is matched very closely. Like the actual data, predicted completion is increasing most

quickly in the middle grade span, where grade signals are expected to be most influential.

C Discussion of estimates and fit

To summarize, the parameter estimates suggest that uncertainty is an important feature of postsec-

ondary schooling outcomes. The preferred estimates (column (4) from Table I) indicate that the

deviation of unanticipated shocks to the relative preference for enrollment and labor market entry

is equivalent to $82,300 in lifetime earnings. These shocks have the same order of magnitude as

the incremental gain from completing a college degree. Thus, unanticipated preference shocks are

an important determinant of educational outcomes. It should be noted that the model assumes that

individuals face no credit constraints. My specification does not permit me to distinguish between

large shocks and small shocks whose effects are magnified by credit constraints. My estimates

reflect the combination of these two factors.24 The estimates also suggest that students learn about

their ex-ante unknown academic aptitude through college grades. Lastly, the estimates suggest that

academic aptitude does predict enrollment outcomes and that much of the relationship between

family background and schooling outcomes can be captured through the effect of background on

academic performance.

Predictions from simulations using the estimated model parameters do match many features

of the actual data on enrollments and grade outcomes. The overall distributions of predicted and

actual outcomes is roughly similar and the model captures several main features of the relationship

between grade outcomes and enrollment decisions. Importantly, the model also replicates edu-

cational differences by background characteristics, despite the strong restriction that they operate

entirely through expected academic performance.

24Incorporating credit constraints would require a different structural model. Cameron and Heckman (2001) use

such a model and conclude that long-run factors associated with family background, not short-term credit constraints,

explain much of the observed racial disparity in college education.
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V The Importance of Option Value

In this section, I estimate the option value created by the ability of students to make educational

decisions sequentially and in response to new information. To do this, I treat the estimated struc-

tural model as the actual data generating process and simulate educational choices and welfare

under alternative assumptions about individuals’ information set.25 In the static model, I simulate

outcomes when individuals are restricted to commit to educational choices before enrolling in col-

lege. They base their decision only on information available before college enrollment: baseline

characteristics (high school GPA, AFQT, parent education, and type), predicted lifetime earnings,

direct tuition and commuting costs, and first-period shocks (εsi,2,1, ε
s
i,4,1, ε

w
i,1). As a basis of com-

parison, I also simulate the choices and welfare in the first-best scenario, where individuals make

decisions with perfect knowledge of all future shocks.

A Educational outcomes

Figure IX summarizes the importance of option value to educational decisions. The top panel

plots the average number of years of college by expected academic ability, separately for the first-

best full information (solid), baseline dynamic (dashed), and static (dotted) models. The static

model predicts that education would be much more bifurcated if students were forced to commit

ex-ante with limited information. People with low expected performance would get very little

education while high ability students would get much more. Compared to the first-best outcome,

this bifurcation reduces welfare because some ex-ante low-ability students should go to or graduate

from college, while some higher ability students should not. Sequential decision-making permits

individuals to come closer to the first-best outcome.

This can be seen more clearly in the middle and bottom panels, which plot the simulated

enrollment and graduation rates by expected ability. These figures are the empirical analog to

the right panel of Figure III, where E[Ai|Xi, T ype] is analogous to εi,1. Option value increases

the enrollment rates of all individuals, particularly those in the middle who are on the enrollment

25To implement the simulations, I first replicate each observation 100 times. For each of these simulated obser-

vations, I then draw preference and grade shocks from the appropriately scaled EV(1) and normal distributions and

assign an unobserved "type" based on the estimated probabilities. The optimal choices for each individual are then

computed by utility comparisons, incorporating these shocks.

24



margin in the static model. Many of these individuals would choose to enroll if they knew their

shocks with certainty but would not if they were forced to commit ex-ante. For low- to moderate-

ability students, option value only slightly increases college completion. The biggest effect of

option value on completion is to reduce it for high ability students. Some high-ability students

expect to graduate - so would commit to doing so ex-ante - but then learn that completion is

undesirable and would prefer to drop out. Allowing them to do so reduces completion rates but

improves their welfare.

B Quantifying option value

Figure X quantifies the option value of college enrollment. The figure plots the average value of

the opportunity to enroll in college by expected academic ability for the same three scenarios and

is the empirical analog of the left panel of Figure III. This value is zero for those who do not enroll.

The value of the opportunity to enroll is increasing in expected ability both because enrollment

increases with ability and because school is less costly for high ability people, so value conditional

on enrollment is also increasing. The vertical distance between the solid and dotted lines represents

individuals’ total welfare loss from being forced to commit to an educational outcome ex-ante,

compared to the first-best situation with full information. This loss is greatest for moderate-ability

individuals. Since sequential decision making helps more individuals obtain their optimal level

of education, it partially closes this welfare gap, as indicated by the dashed line. The difference

between the dashed and dotted lines thus represents the value of the option to drop out whenever

continuation turns out to be undesirable.

Table II summarizes the option value by expected ability category. On average, students would

be willing to pay $14,900 (in 1992 dollars) to maintain the ability to make enrollment decisions se-

quentially in response to information. Given the precision of the parameter estimates, total option

value is fairly precisely estimated with a 90% confidence interval of $11,400 to $18,100.26 Consis-

tent with the simple theoretical model, option value varies considerably with ability. Moderate-

ability students, for whom educational outcomes are most uncertain, are willing to pay up to

26Since the option value is a highly nonlinear and complicated function of the parameters, I rely on simulations to

compute the confidence intervals. Confidence intervals were computed by performing the option value simulation for

500 different draws of the parameter vector from its estimated distribution.
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$25,000, while the lowest ability students derive virtually no value from the option. The option is

also worth less to higher ability students because their enrollment decisions do not depend on it.27

Table II also normalizes the option value in two ways. My estimates imply that option value

accounts for 14% of the total value of the opportunity to enroll in college. For low to moderate

ability students, this fraction is even higher. Option value also represents approximately one quarter

of the welfare loss associated with moving from the full information to static scenarios.

Additional simulations are used to allocate the total option value into the years in which new

information is learned. The first three years of college each provide new information about aca-

demic ability (in the form of grade signals) and the relative desirability of schooling and work

(εsi,2,t, ε
s
i,4,t, ε

w
i,t). To do this decomposition, I simulate educational choices and welfare when in-

dividuals are restricted to commit to educational choices before enrolling in college (the static

model discussed above), after the first year, after the second year, and after the third year (the base-

line dynamic model). For moderate-ability students, the most valuable information is that which is

learned in the first year of college, when the wisdom of their enrollment decision is most uncertain.

Higher ability students derive relatively more value from information received later, when gradu-

ation decisions are made. Approximately 60% of the total option value derives from information

learned in the first year, while the other two years account for about 20% each.

To summarize, the value of the option to drop out is considerable, particularly for moderate

ability students who have the most uncertainty about their net benefit from schooling. The option

to drop out has value both because it encourages more people to enroll, who may not want to if

forced to commit ex-ante, and it because it permits dropout if graduation is undesirable among

those who would commit to graduate ex-ante. In aggregate, the former is greater than the latter.

Furthermore, the majority of the aggregate option value comes from the information received in

the first year of college.

27These estimates are not directly comparable to those presented in Table 7 of Heckman, Lochner, and Todd

(2006) because their model is one of exogenous dropout and their estimates include continuation value. That said,

their estimate of the option value of college attendance is of a similar order of magnitude as that reported here.
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C Option value in a more general setting

There are several ways in which the model could be generalized. The current specification assumes

that (1) labor market entry is costless but irreversible, or (2) individuals do not learn about the

relative desirability of schooling and work while in the labor market, and (3) labor market draws

persist following labor market entry. This is a special case of a more general model (discussed

in the Appendix) in which attending school and working both provide information and where

decisions are not completely irreversible. Relaxing these assumptions would affect my estimate of

the option value. In the extreme case, with no switching costs and completely symmetric learning

(i.e. people learn as much about their tastes while working as they do attending school), enrollment

and labor market entry would provide equal option value, so the net total informational value from

enrollment itself would be zero. Though the information learned in school is valuable, this value

is offset by the cost of lost information that could be gained by working. Welfare overall would

be much greater in this scenario but the net return to enrolling rather than working would be lower

than if re-enrollment were not permitted.

Another asymmetry in the current specification is that individuals receive new labor market

draws only if enrolled in school, so enrollment lets people delay labor market entry until receiving

a favorable draw. Relaxing this restriction so that people receive new labor market draws while

not in school will also reduce the estimated option value. The appropriateness of this assumption

can be examined using annual data on labor market outcomes, which the current dataset does not

contain.

Though the maintained assumptions seem plausible, my estimates should be considered an

upper bound of the net option value associated with enrollment. Extensions that permit dynamic

considerations after initial labor market entry, such as re-enrollment and repeated labor market

draws, would make labor market entry more desirable and diminish the relative benefit of college

enrollment.

This paper has chosen to focus on the flexibility afforded to students’ binary enrollment deci-

sions, but there are many other schooling choice dimensions over which students can re-optimize

after enrollment. For instance, college students can change majors, transfer schools (adjusting

college quality), or adjust course sequencing in response to new information. The value of the
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decision flexibility in these dimensions is included in the value of the enrollment opportunity both

in the dynamic and static settings, so is netted out from the option value estimate presented here.

Quantifying the option value created by major, course, and school choice flexibility is an important

task for future research, as these attributes are directly controlled by schools and policy-makers.

D Policy consequences of educational uncertainty

Many education policies have a temporal dimension, making option value considerations poten-

tially important. For instance, giving students a bonus for graduating directly alters the financial

gain to the final year of college but not the first three. Both community colleges and the Federal

Hope tax credit explicitly alter the tuition gradient by making the first few years of college cheaper

than the last half. If students are forward-looking, the time path of incentives will enter enroll-

ment and continuation decisions in a different way than if decisions were static. While a complete

assessment of specific policies is beyond the scope of this paper, I briefly sketch how static and

dynamic models of schooling may result in different policy effects.28

A static model will generally under-predict the effect of community colleges on enrollment. In

addition to directly making college less expensive, community colleges increase the option value

of enrollment because dropout is less costly so more people experiment with school. The sta-

tic model does not fully incorporate this added informational benefit. In contrast, a static model

will over-state the effects of across-the-board tuition subsidies on college completion. In the pres-

ence of large degree effects, a static model predicts a bimodal distribution of education outcomes,

with many non-enrollees and many graduates, but few dropouts. Consequently, more enrollees

are predicted to continue through to graduation in response to an across-the-board subsidy than

would be the case in a dynamic setting. A static model which ignores endogenous dropout will

also make similar predictions for front- and back-loaded tuition subsidies, but these policies can

have quite different effects if choices are dynamic. A static model also over-predicts the gradua-

tion consequences of increasing academic preparedness in high school. Expected performance in

college - which depends heavily on high school GPA - has much more influence on educational

outcomes in the static model. If decision-making is dynamic, however, less weight is placed on

28A companion paper is using the estimated model to examine the option value aspects of several policy interven-

tions specifically.
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baseline anticipated performance as new information is acquired during each year. The bottom line

is that uncertainty is an important feature of educational decisions and failing to account for it may

provide misleading estimates of policy effects. This is particularly true when comparing policies

that have different temporal characteristics, such as community colleges (which alter the tuition

gradient) or across-the-board tuition reductions (which do not).

VI Summary and Conclusions

This paper examines the empirical importance of uncertainty and option value to college enroll-

ment. It is the first to quantify the magnitude of the option value that arises when individuals

make decisions to invest in a college education sequentially and when the desirability of doing

so is uncertain. Estimates suggest that this value is substantial. In contrast to a scenario where

individuals must commit to an educational outcome ex-ante, the current flexible system increases

welfare by $14,900 on average. This represents 14% of the overall value of the opportunity to

enroll in college. Moderate-ability students, who have the most uncertainty about the desirability

of schooling, derive even more value from this flexibility. The traditional human capital model

ignores this value.

The finding that enrollment choice flexibility substantially improves welfare has direct impli-

cations for the potential costs of student "tracking." This paper suggests that, at least in the U.S.

postsecondary context, students learn quite a bit about their ability and preferences in the first few

years of college. Forcing students to commit ex-ante makes educational outcomes more polar-

ized by background and reduces welfare, particularly for students at the margin. This welfare loss

must be weighed against any efficiency gains resulting from greater specialization through earlier

tracking, such as that identified by Malamud (2008). The temporal dimension of many other edu-

cation policies - for instance, whether to subsidize tuition at the beginning or end of college - have

received very little attention despite their importance if schooling decisions are dynamic.

The general framework developed herein could also be used in a number of different contexts

in which decisions are partially irreversible and made in the presence of uncertainty.29 One po-

29Retirement decisions are one topic in labor economics to which this framework has been applied. See Stock and

Wise (1990) and Coile and Gruber (2007) for an application of option value to the study of retirement decisions.
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tential application is the use of "take-it-or-leave-it" job offers. Firms hiring many law or business

school graduates force students to commit to a job early in the fall, possibly before their industry

or locational preferences are finalized. The model implies that firms would have to compensate

individuals for this loss of flexibility, through a signing bonus or higher salary. Marriage and fertil-

ity decisions are also partially irreversible and made in the presence of uncertainty. The ability to

wait and acquire more information before committing to a decision thus creates option value. The

effects of policies that alter the ability to reverse a decision (e.g. divorce costs) operate through

this channel. Investments in health can also be understood as motivated by option value consider-

ations. Since many health conditions (e.g. diabetes onset, lung cancer) are partially irreversible,

forward-looking individuals should make costly health investments when young in order to pre-

serve the option of being healthy when old. Subsidies for preventative care, a healthy diet, and

exercise among the young can be rationalized by this option value if individuals are not completely

forward-looking.
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Figure I: Returns to and Distribution of Postsecondary Education, Men

Notes: Density is from IPUMS-CPS years 1985 to 1990 restricted to 35 year old male high

school graduates. The solid line plots the coefficients from a linear regression of log lifetime

earnings (minus average tuition) on a set of schooling level dummies and control variables

using data from the NLSY. PDV of lifetime earnings are computed from age 18 to 62 assuming

real income is constant from age 38 to 62 and a discount rate of 5%. Linear controls include

dummies for ethnicity, four regions, urban, parents’ education, high school GPA, AFQT, and

the pairwise interactions between these last three variables. These OLS estimates only partially

address the endogeneity and selection problems which complicate earnings comparisons by

schooling level.
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Figure II: Simple Dynamic Model of College Enrollment and Completion
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Table I: Estimates of Structural Parameters

One type Three types One type Three types
(1) (2) (3) (4)

Utility parameters
constant (2yr) ­2.911 ­4.346 ­2.569 ­3.187

(0.150) (0.442) (0.121) (0.378)

constant (4yr) ­2.588 ­3.765 ­2.220 ­2.845
(0.137) (0.391) (0.105) (0.332)

E[Ai] 0.707 1.242 0.591 1.009
(0.049) (0.161) (0.039) (0.154)

distance (100) 0.121 0.277 0.139 0.220
(0.034) (0.074) (0.034) (0.065)

tau 0.511 0.780 0.513 0.642
(0.022) (0.074) (0.023) (0.070)

Grade parameters
constant (gpa) 1.192 0.835 0.802 0.659

(0.056) (0.102) (0.072) (0.087)

HS GPA 0.383 0.394 0.436 0.523
(0.019) (0.026) (0.025) (0.029)

AFQT 0.411 0.702 0.581 0.695
(0.039) (0.082) (0.057) (0.072)

ParBA 0.206 0.297 0.281 0.336
(0.017) (0.033) (0.026) (0.033)

E[A|X] period 1
(fixed)

E[A|X] period 2 0.482 0.528
(0.030) (0.034)

E[A|X] period 3 0.319 0.343
(0.038) (0.046)

E[A|X] period 4 0.188 0.206
(0.046) (0.057)

sd_gpa 0.645 0.478
(0.008) (0.007)

sd_gpa1 0.657 0.617
(0.014) (0.016)

sd_gpa2 0.534 0.521
(0.013) (0.013)

sd_gpa3 0.526 0.520
(0.014) (0.014)

sd_gpa4 0.547 0.545
(0.016) (0.016)

Type­specific parameters

constant (gpa) ­ T2 0.634 0.256
(0.024) (0.088)

constant (2yr) ­ T2 0.124 0.603
(0.290) (0.196)

constant (4yr) ­ T2 ­0.244 ­2.387
(0.185) (0.519)

probability T2 0.174 0.075
(0.022) (0.011)

constant (gpa) ­ T3 ­0.889 ­0.536
(0.042) (0.067)

constant (2yr) ­ T3 ­0.201 ­1.646
(0.245) (0.496)

constant (4yr) ­ T3 0.271 ­0.441
(0.088) (0.120)

probability T3 0.359 0.625
(0.030) (0.040)

Observations 2055 2055 2055 2055
lnL (total) 6328 5844 5888 5719

LearningNo Learning

Notes: Utility is in units of $100,000. Income specification (1) from Table A3 was used to

generate counterfactual income estimates. Standard errors (in parentheses) were caclulated

from the inverse of the numerical Hessian. Specifications (3) and (4) uses seventeen GPA

categories for Emax approximation (0.0, 0.25, 0.50, . . . , 4.0)

38



Figure V: Actual vs. Simulated Educational Outcomes

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks, and

choices of each observation is simulated 100 times, assuming that individuals follow the full

model described in the text with parameter values equal to those in specification (4) of Table I.

Figure VI: Actual vs. Simulated Outcomes Conditional on Enrollment

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks, and

choices of each observation is simulated 100 times, assuming that individuals follow the full

model described in the text with parameter values equal to those in specification (4) of Table I.
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Figure VII: Model Fit of Educational Outcome Differentials by Familiy Income

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks, and

choices of each observation is simulated 100 times, assuming that individuals follow the full

model described in the text with parameter values equal to those in specification (4) of Table I.

Figure VIII: Actual vs. Simulated Graduation Rates by 1st Year GPA

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks, and

choices of each observation is simulated 100 times, assuming that individuals follow the full

model described in the text with parameter values equal to those in specification (4) of Table I.
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Figure IX: Effect of Uncertainty on Educational Outcomes

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks,

and choices of each observation is simulated 100 times, assuming that individuals follow the

static, full dynamic, or perfect information scenarios described in the text. Parameter values are

assumed equal to those in specification (4) of Table I.
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Figure X: Average Value of College Enrollment Opportunity by Expected Academic Ability

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks,

and choices of each observation is simulated 100 times, assuming that individuals follow the

static, full dynamic, or perfect information scenarios described in the text. Parameter values are

assumed equal to those in specification (4) of Table I.
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Table II: Estimated Option Value, by Expected Academic Ability

E[Ai | Xi] Estimate 5% 95% Estimate 5% 95% Estimate 5% 95%
1.0 0.3 0.2 1.7 7% 4% 19% 3% 2% 12%
1.5 3.2 2.8 5.1 25% 22% 29% 12% 11% 17%
2.0 16.8 13.4 20.5 35% 31% 38% 27% 25% 29%
2.5 25.0 18.1 31.2 19% 17% 23% 32% 29% 34%
3.0 16.6 12.7 21.3 6% 5% 8% 28% 25% 31%
3.5 12.2 4.7 19.2 3% 1% 5% 24% 9% 32%
All 14.9 11.4 18.1 14% 12% 16% 27% 25% 29%

O.V. as % welfare loss between full
information and static scenariosOption value ($1,000)

O.V. as % total value of enrollment
in dynamic scenario

Notes: For a given parameter vector, option value is calculated as the average welfare difference

between the static and dynamic scenarios when the type, shocks, and choices of each observa-

tion is simulated 100 times. Confidence intervals are computed by performing this option value

calculation for 500 different draws of the parameter vector from its estimated distribution.
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Appendix Materials (Not for Publication)

Appendix I. Proof of Proposition 1

Proposition 1 (The properties of option value).

a. OptionV alue(εi,1) is non-negative for all εi,1.

b. OptionV alue(εi,1) is greatest for individuals at the enrollment margin in the static model.

c. OptionV alue(εi,1) is increasing and the critical value εd,1 is decreasing in the level of un-

certainty (variance of εi,2).

d. OptionV alue(εi,1) reduces the dependence of educational outcomes on εi,1.

e. The option to drop out improves welfare.

Proof. Consider three groups of individuals which together span the space of εi,1. Group A (εi,1 <

εd,1) does not enroll under either the static or dynamic settings. Since they do not enroll, they

get no value from the option to drop out. Group C (εs,1 < εi,1) enrolls in both the dynamic and

static settings. Their option value equals E[max{−ρεi,1, εi,2}]. This expression is decreasing in

εi,1 and positive since E[εi,2|εi,2 > Z] ≥ E[εi,2] = 0 for any value Z. Group B (εd,1 < εi,1 < εs,1)

enrolls in the dynamic setting but would not if they were forced to commit to their educational

decision ex-ante. For these individuals, the option value is pivotal to enrollment. This option value

is equal to εi,1 +E[max{0, ρεi,1 + εi,2}]. In this region, this expression is positive (by definition of

εd,1) and monotonically increasing in εi,1. Option value of individuals in this group is maximized

at the boundary εi,1 = εs,1 = 0 where the option value equals E[max{0, εi,2}]. This is greater

than the option value of any individuals in the other two groups. Properties a and b follow. For

a given level of variance of εi,2, the truncation point is fixed (at −ρεi,1 for Group A and 0 for

Group B). Since increased variance increases the truncated conditional expectation of a random

variable, property c follows. Like a financial option, the value of the dropout option increases

in the variance of the value of the underlying asset (εi,2). Also, as OptionV alue(εi,1) increases

due to increased uncertainty about εi,2, enrollment becomes desirable to more people, reducing the

A- 1



enrollment threshold. Property d can be seen from the decision rules in the previous section. In the

fully static case, educational outcomes are fully determined by information available in the first

period. This in not true when schooling decisions are sequential. Property e is a corollary of a:

since option value is non-negative, it improves welfare.

Appendix II. Dataset Construction

The dataset used in estimation and simulation was constructed from several sources. Table A-I

provides an overview of the main variables used in the analysis. The sample of individuals comes

from the National Educational Longitudinal Study (NELS). The NELS is a longitudinal survey of

a representative sample of U.S. 8th graders in 1988. Interviews were conducted in 1988, 1990,

1992, 1994, and 2000 and complete college transcripts were obtained for most individuals in 2000.

The core schooling outcome variables, including yearly grade point average and indicators for en-

rollment were constructed directly from the college transcripts. The transcripts consist of course-

specific records, including student ID, college IPEDS ID number, subject, month and year, credits,

letter grade, and standardized numeric grade on a four-point scale. Course-level records were ag-

gregated up to the student x college x term level to identify the primary school enrolled in, and

then to the student x year level. The final transcript data contains student x year records of credits

attempted, credits earned, grade point average, and several other variables. Individuals were con-

sidered enrolled during academic year t if they attempted at least six course credits (the traditional

definition of part-time enrollment) at a two- or four-year college during both the Fall and Spring

semesters of year t.30 The model describes college dropout, so I categorize people according to

their number of years of continuous enrollment. Students who "stop-out," but eventually return

and possibly graduate are grouped with students who dropout permanently in the same year. From

the 1992 NELS surveys I utilize high school grade point average, standardized test scores, par-

ents’ highest education level, and family income during high school. I convert NELS senior year

test scores into AFQT percentile scores using the cross-walk developed by RAND researchers in

Kilburn, Hanser, and Klerman (1998).

30Enrollment at private (profit or non-profit) two-year colleges, for-profit four-year colleges, or less than two-year

schools were counted as non-enrollment.
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I supplemented the NELS dataset with institutional characteristics obtained from the Depart-

ment of Education’s 1992 Integrated Postsecondary Education Data System (IPEDS) Institutional

Characteristics survey. IPEDS surveys the universe of public and private two- and four-year col-

leges in the United States. From the IPEDS, I calculated average tuition levels at public two-year

and four-year colleges in each state and merged this data onto the NELS. Latitude/longitude coor-

dinates were then assigned to each college in IPEDS and high school in the NELS by zip code from

the US Census 1990 Gazetteer Files (http://www.census.gov/geo/www/gazetteer/gazette.html). From

this, I calculated distance from each NELS high school to the nearest public two-year and four-year

college (in miles). Table A-II displays summary statistics.

One limitation of the NELS dataset is that respondents are relatively young (approximately 26

years old) at the time of the final survey year. Income at this age is a poor indicator of ultimate

lifetime income due to job instability, graduate school attendance, and the steep return to initial

labor market experience. I instead estimate individuals’ expectation of lifetime income using data

from an earlier cohort. This procedure is described in the next section.

I restrict the dataset to on-time high school graduates with complete information on key base-

line variables and complete college transcripts (unless no claim of college attendance). I also

exclude residents of Alaska, Hawaii, and the District of Columbia. From the initial 5,782 men in

the NELS, these restrictions eliminate the following number of observations: not 1992 high school

graduate (1,068), incomplete transcripts (314), high school missing or in AK/DC/HI (62), missing

high school GPA (1,078), missing AFQT (408), missing parent education (193), missing family

income (170), missing distance to nearest colleges (412, mostly private high schools for which

address is not available), missing college GPA if enrolled (13). After these restrictions the final

dataset contains 2,055 men. Though these restrictions reduce the sample considerably, the final un-

weighted analysis sample is very similar to a nationally representitive sample of U.S. high school

graduates. Panel A in Table A-III compares the analysis sample to the full NELS sample of 1992

high school graduates and 12th graders (weighted and unweighted). The unweighted analysis sam-

ple is generally very similar to the full representative sample, thus my results can be generalized

to all U.S. high school graduates from 1992.

A- 3



Appendix III. Estimating Conditional Income Expectations

Expectations of lifetime income under different schooling outcomes are a key factor in educational

choices. One limitation of the NELS dataset is that respondents are relatively young (approxi-

mately 26 years old) at the time of the final survey year. Since income at this age may be a poor

indicator of ultimate lifetime income, I do not estimate expectations using individual’s actual labor

market outcomes. Instead I estimate individuals’ expectation of lifetime income using data from

a cohort about 12 years earlier, the National Longitudinal Survey of Youth 1979 (NLSY79). This

approach assumes students form "reference group expectations" referred to by Manski (1991).

The NLSY79 is a Department of Labor longitudinal survey of 12,686 men and women who

were 14-22 years old in 1979. They have been surveyed annually or biennially since. Using

variables that are common in both the NLSY79 and NELS (such as high school GPA, parental

education, AFQT, ethnicity, urban and region), I first estimate the parameters of a lifetime income

equation on the NLSY79 data. My NLSY79 analysis sample consists of all male high school

graduates with non-missing covariates, including oversamples of minority and poor individuals.

Panel B of Table A-III compares this analysis sample to the NLSY cross-section sample (which

doesn’t include these oversamples) and to my NELS analysis sample. The NLSY analysis sample

is more disadvantaged than NLSY high school graduates generally and than members of my NELS

analysis sample. A lack of comparability between the NLSY and the NELS could affect my option

value estimates if the returns estimated using the NLSY are not reflective of all high school grad-

uates in the NELS. I examine these comparability issues both by letting returns differ with student

background and by restricting analysis to the NLSY cross-section sample (excluding the poor and

minority oversamples).

Equation A1 is estimated on the NLSY high school graduate sample using OLS and is used to

predict counterfactual lifetime income for individuals in the NELS sample.

Incomei = ω0 + ω131(Si(ti) = 13) + ω141(Si(ti) = 14) + ω151(Si(ti) = 15) + ω161(Si(ti) ≥ 16)(A1)

+ωbBlacki + ωlLatinoi + ωcCentrali + ωsSouthi + ωwWesti + ωuUrbani

+ωgHSgpai + ωaAFQTi + ωpParentEdi

+ωgaHSgpai ∗ AFQTi + ωgpHSgpai ∗ ParentEdi + ωapAFQTi ∗ ParentEdi + εωi
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The dependent variable Incomei is the present discounted value of lifetime income from the period

of first labor market entry (ti) to age 62. The key dependent variable is years of continuous enroll-

ment in school, Si(ti), which is entered as a set of four dummy variables and is determined me-

chanically by period of first labor market entry (ti) since re-enrollment is ignored. Since NLSY79

individuals are ages 39 to 47 in 2004, the most recent year for which data is available, so I assume

that earnings are constant from age 39 to 62. The base specification permits the intercept of lifetime

income to vary with observable background and ability variables, but restricts the lifetime income

returns to each year of college to be constant across individuals. An alternative specification allows

the return to some college (S = 13, 14, or 15) and a BA (S ≥ 16) to vary with high school gpa,

AFQT, and parent’s education. If returns to education differ with student background, then permit-

ting heterogeneous returns will partially mitigate concerns about the comparability of the NLSY

and NELS analysis samples. In practice, these interactions are insignificant, so my main analysis

uses the constant-returns estimates. Table A-IV provides estimates of the parameters of the lifetime

income equation for both the base and heterogeneous-returns model for different assumed values

of the discount rate. The last two columns exclude the poor and minority oversamples from the

analysis. Again, the estimated returns to each year of college are very similar using the full and

smaller samples, so I use the former in my main analysis.

For each individual in the NELS analysis sample, the model estimated in A1 is used to predict

counterfactual lifetime income for the five possible schooling levels: Incomei1 (corresponding to

Si = 12) through Incomei5 (corresponding to Si ≥ 16). Table A-V presents the predicted lifetime

income counterfactuals for the NELS sample.

Appendix IV. Full Model and Solution

Structure of Choices and Preferences

I model the college enrollment and continuation decisions at four periods in time, corresponding

to the four academic years after high school graduation. During the first period individuals decide

whether to start at a four-year or two-year college, which I refer to as pathway choice, or to not

enroll in college. The pathway chosen affects the level and timing of direct schooling costs (which
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may differ across individuals) and unmodeled college amenities. At each time period t an indi-

vidual chooses whether to enter the labor market (receiving payoff uwi,t) or continue in school for

another year, receiving payoff usi,j,t in period t and the option to make an analogous work-school

decision in period t + 1, where j = 2, 4 denotes the type of school currently attending. After

period two, students that started at a two-year college must attend a four-year college if they want

to continue in school.31 After period four, there are no more decisions to make and all individuals

enter the labor market.32

Utility is in dollars. The indirect utility from discontinuing school and entering the labor market

at period t equals the expected present discounted value of lifetime income from period t to age 62

(Incomei,t) plus a random component εwi,t.

uwi,t = Incomei,t + εwi,t (A2)

The expected indirect utility derived from attending school during period t, usi,j,t, depends linearly

on a heterogeneous intercept (αi,j , specified later), expected unknown ability (Ai), direct tuition

and commuting costs, and a random component εsi,j,t. Distancei,j,t and Tuitioni,j,t vary by the

type of school currently attending (2-year or 4-year), so individuals that start at a two-year school

will pay community college tuition for the first two years then four-year college tuition for their

third and fourth years.

usi,j,t = αi,j + αAEt[Ai]− (αDDistancei,j,t + Tuitioni,j,t) + εsi,j,t (A3)

The random shocks (εsi,j,t,ε
w
i,t) are learned by the individual prior to making the period t de-

cision. The term αAEt[Ai] captures the preference for school (in dollar terms) that covaries with

its expected difficulty.33 Individuals do not know Ai at any time, so they form expectations of it

31In the estimation, I do not actually distinguish between people attending two- and four-year schools in their third

year. I simplify by assuming that anyone who started at a two-year school that is enrolled in their third year faces the

four-year school cost structure, even if they are actually enrolled in a two-year school.
32The model does not currently permit two-year and four-year colleges to affect earnings differently or allow for

heterogeneity among four-year colleges. Kane and Rouse (1995) find that the return to education received at two- and

four-year institutions is comparable. They estimate that the average college student earned about 5% more than similar

high school graduates for every year of credits completed, regardless of where those credits were earned.
33This specification can be motivated by a model where the difficulty of year t is distributed around a fixed and

unobserved individual-specific mean, so Ai,t = Ai + εai,t. Individuals learn Ai,t after each year, but cannot separate

Ai from εai,t. If εai,t is mean zero and serially uncorrelated, then Et[Ai,t] = Et[Ai]. Also, since I have assumed risk
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when making their period-t decisions. Utility is cumulative so individuals who attend a two-year

school for two years then enter the labor market, for instance, will receive total lifetime utility of

usi,2,1 + βusi,2,2 + β2uwi,3, where β is a discount factor.

usi,j,1(·) represents the non-stochastic component of the indirect utility of attending school.

Individuals know baseline characteristics (Xi) as well as the first period shocks (εsi,2,1,εsi,4,1,εwi,1)

when making the initial enrollment decision, but learn future shocks and grade outcomes only

after enrolling. All other parameters of the model are known to the individual throughout.

Academic Performance

At the end of each year, students enrolled in college learn their performance during that year.

Academic performance is measured by the college grade point average (on a four-point scale)

during period t. I assume that grades provide a noisy signal of Ai:

gi,t = Ai + εgi,t (A4)

The εgi,t is the component of grade outcomes that is not serially correlated. This represents idio-

syncratic determinants of academic performance that do not persist across time. The conditional

expectation of Ai on baseline characteristics (Xi) is given by the heterogeneous term γi, which is

specified in the next subsection.

E[Ai|Xi] = γi (A5)

Heterogeneity

The variables αi,j and γi represent persistent preferences for school and persistent determinants of

academic aptitude, respectively, which may be correlated in the population. αi,j varies with school

type (j) so that individuals may have different tastes for attending a two- or four-year school. To

permit a general structure of correlation between unobservable preferences and ability, I specify

that αi,j and γi come from a mass point distribution which describe the ability and schooling

neutrality, the variance of εai,t has no impact on expected utility or decisions, so can be ignored.
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preferences of M different types of individuals.34 Type is known to the individual throughout,

but is unknown to the econometrician. I also make the parametric assumption that the conditional

expectation ofAi on baseline characteristics is linear in high school grade point average (HSgpai),

percentile score on the AFQT, and whether a parent has a college degree (ParBAi).

αi,j = α0,j + αm,j for m = 1, 2, ...,M (A6)

γi = γ0 + γm + γGHSgpai + γTAFQTi + γPParBAi (A7)

where γm measures the unobserved academic aptitude of people of "type" m and αm,j is their

preference for school of type j. I estimate models permitting up to three types (M = 3). For

Type I individuals, γm and αm,j are normalized to zero. Essentially, the specification permits the

intercepts of academic performance and of indirect utility to each take on three different values,

corresponding to the three unobserved types. As a special case, I will also estimate models with no

unobserved heterogeneity, which assumes that all correlation between preference for school and

academic aptitude are captured linearly through αAEt[Ai].

Solution

At each time t , the individual maximizes the expected discounted value of lifetime utility by

choosing whether to discontinue schooling and receive uwi,t or continue school for at least one more

year. The decision problem can be solved for each individual by backwards recursion and by

assuming a distribution for the preference and grade shocks (εsi,j,t, ε
w
i,t, ε

g
i,t). Throughout I assume

that εsi,2,t,ε
s
i,4,t, and εwi,t are drawn from an Extreme Value Type I distribution with location and scale

parameters zero and τ , respectively. Grade shocks are assumed to be normally distributed with εgi,t

∼ N(0, σGt).

With learning, individuals update their belief about Ai in response to new information received

through grades. I make the parametric assumption that the conditional expectation of Ai is a

weighted average of the unconditional expectation and students’ cumulative grade point average.

34The use of a mass-point distribution to approximate the distribution of preferences known to the agent but un-

known to the econometrician is discussed by Heckman and Singer (1984) and is widely used in dynamic structural

work such as Keane and Wolpin (1997) and Eckstein and Wolpin (1999).
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The weights are parameters to be estimated.

Et[Ai] = E[Ai|Xi] if t = 1 (A8)

= γXtE[Ai|Xi] + (1− γXt)
q=t−1∑
q=1

gi,q
t− 1

if t > 1

This specification is an approximation of the normal learning model. The normal learning

model imposes that γXt =
(

1/σ2a
1/σ2a+(t−1)/σ2g

)
, where σ2

a is the variance of Ai and σ2
g is the variance

of (gi,t − Ai). I have not imposed that the timing of learning follow the behavior implied by the

normal learning model. Instead, I estimate γXt and the variance of the residual gi,t − Et[Ai] as

parameters.

At period 4 the final enrollment decision is made by comparing the lifetime utility of entering

the labor market without graduating to that of continuing for one more year. In periods 2 through

4, I omit the j subscripts.

V w
i,4 = Incomei,4 + εwi,4 (A9)

V s
i,4 = α0 + αm + αAE4[Ai]− Costi,4 + βE4[Vi,5] + εsi,4

where Costi,4 = αDDistancei,4 + Tuitioni,4. At period 4, expectations are taken over the

distribution of labor market shocks in period 5 (εwi,5) and grade shocks in period 4 (gi,4). Since

all individuals enter the workforce upon reaching period 5, Vi,5 = V w
i,5 = Incomei,5 + εwi,5 and

E4[Vi,5] = Incomei,5 + τλ from the extreme value assumption [λ = 0.577 is Euler’s constant].

Future utility is discounted at the rate β. If individuals learn about unobserved ability through

grades, then E4[Ai] is a weighted average of the unconditional expectation and previous grade

realizations:

V s
i,4 = α0 + αm + αA

[
γX4E[Ai|Xi] + (1− γX4)

q=3∑
q=1

gi,q
3

]
− Costi,4 + β[Incomei,5 + τλ] + εsi,4

(A10)

Individuals will continue to graduation if V s
i,4 > V w

i,4.

At periods 2 and 3, the enrollment and continuation decisions are made by comparing the
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lifetime utility of entering the labor market immediately to that of continuing school for one more

year.

V w
i,t = Incomei,t + εwi,t

V s
i,t = α0 + αm + αAEt[Ai]− Costi,t + βEt[Vi,t+1] + εsi,t

where Vi,t+1 = max(V w
i,t+1, V

s
i,t+1). Expectations are again taken over the distribution of all

future preference shocks (εwi,q, ε
s
i,q for q > t) and grade shocks (gi,q for q ≥ t), but now both of

these influence future educational decisions. Integrating out the grade shocks (due to conditional

independence between grades and shocks, see Rust (1987)), the Emax term can be written as:

Et
[
max(V w

i,t+1, V
s
i,t+1)

]
=

∫
Et
[
max(V w

i,t+1, V
s
i,t+1)|gi,t

]
· Π(dgi,t|Xi, {gi,1...gi,t−1})

where Π(dgi,t|Xi, {gi,1...gi,t−1}) is the pdf of the t-period grade outcome conditional on infor-

mation available at time t. The conditional expectation is taken only over the future preference

shocks (εwi,q, ε
s
i,q for q > t). Again with the assumption that the preference shocks are not serially

correlated and are drawn from an extreme value distribution, this expectation has a closed-form

representation35:

Et
[
max(V w

i,t+1, V
s
i,t+1)

]
=

∫ [
τλ+ τ log

{
exp

(
1

τ
V
s

i,t+1(gi,t)

)
+ exp

(
1

τ
V
w

i,t+1

)}]
· Π(dgi,t|Xi, {gi,1...gi,t−1})

In order to actually solve and estimate the model, I discretize gi,t intoK values and approximate

Π(dgi,t|Xi, {gi,1...gi,t−1}) with a discretized version p(gki,t|Xi, {gi,1...gi,t−1}).36 The Emax term

35Domencich and McFadden (1975, Chapter 4) show that the expected value of the maximum of an EV(1) random

variable has this closed form representation.
36See Rust (1987). Since grades are distributed normally, the transition probabilities can be computed directly using

the standard normal cumulative distribution function. p(gki,t|Xi, {gi,1...gi,t−1}) = Φ

(
gki,t+(0.5)∗kstep−Et[gi,t]

σt,g

)
−

Φ

(
gki,t−(0.5)∗kstep−Et[gi,t]

σt,g

)
where kstep is the distance between the points in the discretized grade space.

A- 10



can then be written as

Et
[
max(V w

i,t+1, V
s
i,t+1)

]
=

K∑
k=1

[
τλ+ τ log

{
exp

(
1

τ
V
s

i,t+1(gki,t)

)
+ exp

(
1

τ
V
w

i,t+1

)}]
· p(gki,t|Xi, {gi,1...gi,t−1})

And the indirect utility function becomes:

V s
i,t = α0 + αm + αA

[
γXtE[Ai|Xi] + (1− γXt)

q=t−1∑
q=1

gi,q
t− 1

]
− Costi,t (A11)

+β

[
K∑
k=1

[
τλ+ τ log

{
exp

(
1

τ
V
s

i,t+1(gki,t)

)
+ exp

(
1

τ
V
w

i,t+1

)}]
· p(gki,t|Xi, {gi,1...gi,t−1})

]
+ εsi,t

Individuals will continue their education if V s
i,t > V w

i,t .

At period 1, the value of the two enrollment options takes a similar form:

V s
i,j,1 = α0,j + αm,j + αAE[Ai|Xi]− Costi,j,t (A12)

+β

[
K∑
k=1

[
τλ+ τ log

{
exp

(
1

τ
V
s

i,2(gki,1)

)
+ exp

(
1

τ
V
w

i,2

)}]
· p(gki,1|Xi, )

]
+ εsi,j,1

At period 1, individuals maximize expected lifetime utility by choosing between V s
i,2,1, V

s
i,4,1, and

V w
i,1.

Appendix V. Model Alternatives and Extensions

The empirical model places several important restrictions on individuals’ choice and information

sets. I assume that (1) labor market entry is costless but irreversible. People cannot return to

school after entering the workforce. I also assume that (2) individuals do not learn about the

relative desirability of schooling and work while in the labor market. In combination, these two

restrictions mean that individuals "exercise their option" by leaving school. Lastly, I assume that

(3) labor market draws persist following labor market entry. Individuals do not receive another

labor market draw while in the workforce.
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To see these assumptions more clearly, consider a general model in which attending school and

working both provide information - people learn about their enjoyment of each only through doing

them (individual subscripts have been omitted):

uwt = αw + Incomewt (Expt, St) + αwAE[Aw|=o,=wt ] + SwitchCostw · 1(Attendt−1 = 1) + εwt

ust = αs + Incomest(Expt, St) + αsAE[As|=o,=st ] + SwitchCosts · 1(Attendt−1 = 0) + εst

Individuals form expectations of the state-specific unknown component of indirect utility (Aw

and As) based on information available at baseline (=o), and that learned while working (=wt )

and attending school (=st ) up to that point. Moving between the labor market and school is

costly. Income while working or attending school depends on labor market experience (Expt)

and years of completed schooling (St) up to that point. I assume Incomest(Expt, St) = −Costt =

−(αDDistancet + Tuitiont). Any income earned during school will be absorbed in the estimate

of αs.

Assumption (1) corresponds to the restriction that SwitchCosts =∞ and SwitchCostw = 0.

While it is possible to re-enter college after leaving or taking time out, few people do so in practice.

Table A-VI presents the fraction of students enrolled during each year, by the number of years of

continuous schooling. In my sample, the fraction of students who return in the year after their first

year of non-enrollment is 17%, 19%, 28%, and 27% for those whose first year of non-enrollment is

year 1 to 4, respectively. Relatively few of these eventually earn a B.A. degree. This restriction can

be relaxed and SwitchCosts and SwitchCostw can be estimated directly from the data.37 Also,

the value of being able to return to school is partially embedded in my estimates of Incomewi,t. I

combine the earnings of people who enter the labor market at period t and never return to school

with those who eventually do return to school. Therefore my estimate of Incomewi,t is inclusive of

the expected financial gains of being able to return to school after entering the labor market at time

t.

Assumption (2) corresponds to the restriction that=wt = =o for all t. High school graduates’ ex-

pectation of the enjoyment of future work does not depend on their past experience. This assump-

tion is innocuous if people are not able to return to school upon discovering that they don’t like

37Keane and Wolpin (1997) estimate the cost of returning to school after dropping out to be $23,000 during high

school and $10,000 during college.
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working. I also assume that =o = {HSgpa, AFQT, ParBA, Type} and =st = {g1, ..., gt−1}.

The fact that returning to school is rare could be due to high switching costs or to limited learning

while working, so my specification requires that only one of these assumptions holds. Allowing

for learning about tastes for work is an important extension, but one that may need to be pursued

with a different dataset. I use course grades to measure academic aptitude and to serve as a proxy

for taste for school. The current dataset does not contain an obvious analog proxy for individuals’

enjoyment of work.

Assumption (3) corresponds to replacing the labor market shock εwt with εwt ·1(Attendt−1 = 1).

Individuals only receive a new labor market draw if they are currently attending school. I assume

that each year of college provides access to a new set of labor market opportunities previously

unavailable, which increases mean earnings and generates a new draw. Consistent with this as-

sumption, Oreopoulos, von Wachter, and Heisz (2006) find that temporary labor market shocks

(e.g. graduating college during a recession) have permanent effects on lifetime earnings. Signifi-

cant initial earnings losses fade only after 8 to 10 years, generating large losses in the total present

value of lifetime earnings.

These generalizations are beyond the scope of this current paper, but their implications for my

empirical results are discussed in the body of the paper.

Appendix VI. Model Fit

Figures A-I to A-V extend Figures V to VIII to include the model fit for all four models estimated

in Table I. Generally, the preferred specification (Column (4) in Table I) provides the best fit of the

data.
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Table A- I: Variable Descriptions and Sources

Variable Description Source
high school gpa Cumulative grade point average in high school on 4.0 scale NELS.

afqt score Armed Forces Qualifying Test percentile score Constructed from NELS test score variables
using method developed by RAND (see text).

parent education Years of school attended by most educated parent NELS.

parent has ba Indicator for whether at least one parent earned a BA
degree

NELS. Constructed from pareduc variable.

low income family Indicator for whether family income during high school was
below $35,000 (approximately the median)

NELS. Constructed from faminc variable.

urban Attended urban high school NELS. Constructed from phsurban variable.
region northeast High school in Northeast NELS. NLSY categorization.
region northcentral High school in Northcentral NELS. NLSY categorization.

region south High school in South NELS. NLSY categorization.
region west High school in West NELS. NLSY categorization.
white Ethnicity white NELS
black Ethnicity black NELS
latino Ethnicity latino NELS
distance to 2year Distance from high school to nearest public two­year

college.
Computed from lat/long coordinates of high
school (NELS) and each public 2­year college in
state (IPEDS)

distance to 4year Distance from high school to nearest public four­year
college.

Computed from lat/long coordinates of high
school (NELS) and all public 4­year college in
state (IPEDS)

tuition at public
2year

Average tuition ($1992) of public two­year colleges in high
school state

IPEDS

tuition at public
4year

Average tuition ($1992) of public four­year colleges in high
school state

IPEDS

income1 Expected present discounted value of lifetime income if do
not enter college in first year after high school. (thousands
of $1992)

Estimated using out­of­sample prediction from
NLSY (see text).

income2 Expected present discounted value of lifetime income if exit
college after first year (thousands of $1992)

Estimated using out­of­sample prediction from
NLSY (see text).

income3 Expected present discounted value of lifetime income if exit
college after second year (thousands of $1992)

Estimated using out­of­sample prediction from
NLSY (see text).

income4 Expected present discounted value of lifetime income if exit
college after third year (thousands of $1992)

Estimated using out­of­sample prediction from
NLSY (see text).

income5 Expected present discounted value of lifetime income if
complete four years of college (thousands of $1992)

Estimated using out­of­sample prediction from
NLSY (see text).

gpa(t) Grade point average during year (t) of college Computed from NELS college transcripts for all
courses taken for credit (including failures).

enroll(t) Indicator for enrollment in college during year (t) Computed from NELS college transcripts.
Individual must have attempted at least six units
of college credit (approx part­time) in each
semester during year (t).

contenroll Years of continuous enrollment in college after high school
graduation.

Constructed from enroll(t).

fouryear(t) Indicator for enrollment in four­year college during year (t) Constructed from enroll(t) and college type from
IPEDS. Equals one if enroll(t) = 1 and enrolled in
a four­year school in either semester

twoyear(t) Indicator for enrollment in two­year college during year (t) Constructed from enroll(t) and fouryear(t)
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Table A- II: Summary Statistics

Variable Mean
Standard
Deviation Min Max

Baseline variables
high school gpa 2.70 0.68 0.14 4.00
afqt score 46.7 26.9 1 99
parent education (years) 14.2 2.2 10 19
parent has ba 0.28 0.45 0 1
low income family 0.55 0.50 0 1
urban 0.62 0.49 0 1
region northeast 0.16 0.37 0 1
region northcentral 0.31 0.46 0 1
region south 0.32 0.47 0 1
region west 0.20 0.40 0 1
white 0.73 0.45 0 1
black 0.08 0.28 0 1
latino 0.11 0.31 0 1
distance to 2year 15.5 20.5 0 162
distance to 4year 24.0 26.9 0 234
tuition at public 2year 1482 874 280 3476
tuition at public 4year 2298 770 1251 4265
Educational outcomes
enroll year 1 0.53 0.50 0 1
         year 2 0.50 0.50 0 1
         year 3 0.43 0.50 0 1
         year 4 0.40 0.49 0 1
start at 2year 0.15 0.36 0 1
start at 4year 0.38 0.49 0 1
gpa    year 1 2.42 0.86 0.00 4.00
         year 2 2.47 0.90 0.00 4.00
         year 3 2.63 0.88 0.00 4.00
         year 4 2.75 0.85 0.00 4.00
yrs of continuous enrollment 13.81 2.11 12 19
don't enroll 0.47 0.50 0 1
enroll year 1 only 0.10 0.30 0 1
enroll years 1­2 only 0.08 0.27 0 1
enroll years 1­3 only 0.06 0.24 0 1
enroll at least 4 years 0.29 0.45 0 1

Notes: All variables have 2,055 observations, with the exception of GPA variables which are

restricted to those enrolled in each year
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Table A- III: Representativeness and Comparability of NELS and NLSY Samples

Panel A. NELS sample using full sample and sample weights

obs mean obs mean obs mean obs mean
high school gpa 2055 2.70 3520 2.69 3520 2.64 3474 2.65

afqt score 2055 46.66 3855 48.93 3855 46.44 3819 46.95
parent education (years) 2055 14.18 4315 14.47 4315 14.46 4276 14.45

parent has ba 2055 0.28 4315 0.35 4315 0.34 4276 0.35
low income family 2055 0.55 4007 0.60 4007 0.60 3972 0.62

urban 2055 0.62 4707 0.69 4707 0.69 4632 0.69
region northeast 2055 0.16 4672 0.20 4672 0.20 4624 0.19

region northcentral 2055 0.31 4672 0.28 4672 0.27 4624 0.26
region south 2055 0.32 4672 0.32 4672 0.34 4624 0.35
region west 2055 0.20 4672 0.20 4672 0.20 4624 0.20

white 2055 0.73 4711 0.72 4711 0.74 4636 0.74
black 2055 0.08 4711 0.08 4711 0.11 4636 0.10
latino 2055 0.11 4711 0.11 4711 0.09 4636 0.09

distance to 2year 2055 15.54 3672 14.90 3672 15.04 3614 15.02
distance to 4year 2055 24.02 3672 23.30 3672 22.90 3614 22.13

tuition at public 2year 2055 1482.12 4668 1473.77 4668 1477.21 4620 1458.47
tuition at public 4year 2055 2298.27 4672 2298.17 4672 2287.92 4624 2277.31

Total observations 2055 4714 4714 4638

Panel B. NLSY sample vs. NELS sample

obs mean obs mean obs mean obs mean
predicted pdv lifetime income 1982 529.70 1352 580.59 1352 601.14 2055 594.08

black 1982 0.26 1352 0.08 1352 0.03 2055 0.08
latino 1982 0.15 1352 0.05 1352 0.01 2055 0.11

regionnc 1982 0.29 1352 0.36 1352 0.38 2055 0.31
regionso 1982 0.35 1352 0.28 1352 0.25 2055 0.32
regionwe 1982 0.19 1352 0.17 1352 0.17 2055 0.20
urban14 1982 0.78 1352 0.75 1352 0.77 2055 0.62

gpahs 1982 2.39 1352 2.50 1352 2.54 2055 2.70
afqt89 1982 49.87 1352 57.25 1352 60.56 2055 46.66

parented 1982 12.34 1352 13.03 1352 13.33 2055 14.18
don't enroll 1982 0.59 1352 0.56 1352 0.54 2055 0.47

enroll year 1 only 1982 0.08 1352 0.07 1352 0.07 2055 0.10
enroll years 1­2 only 1982 0.10 1352 0.10 1352 0.10 2055 0.08
enroll years 1­3 only 1982 0.06 1352 0.06 1352 0.06 2055 0.06

enroll at least 4 years 1982 0.17 1352 0.21 1352 0.23 2055 0.29

All (w=f4f2pnwt)

Base Cross­section only Cross­section (weighted) NELS sample

Base All (unweighted) All (w=f4qwt92g)

Notes: In Panel A, "All" refers to all male 1992 high school graduates in the NELS. Weight

f4qwt92g corresponds to 1992 high school graduates and weight f4f2pnwt corresponds to 1992

12th graders. Number of observations varies by column due to missing values. In Panel B,

samples include male high school graduates with non-missing covariates.
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Table A- IV: Parameter Estimates from Lifetime Income Equation

d = 5% d =10% d = 5% d =10% d = 5% d = 5%
No weights No weights No weights No weights No weights Weighted

(1) (2) (3) (4) (5) (6)

contenroll = 13 34.64 19.36 95.61 56.34 20.83 23.86
(22.09) (10.63) (75.61) (36.57) ­(29.86) ­(34.23)

contenroll = 14 55.54 32.10 126.74 76.04 62.53 53.26
(24.77) (11.35) (82.67) (39.35) ­(32.06) ­(35.60)

contenroll = 15 165.89 88.99 238.77 133.56 189.16 202.90
(37.88) (17.43) (85.66) (40.95) ­(48.70) ­(54.29)

contenroll > 15 328.13 183.50 ­82.26 ­6.75 327.79 333.55
(30.08) (14.17) (154.00) (72.66) ­(35.90) ­(38.25)

ParentEd 7.65 4.63 13.15 6.96 13.02 11.88
(8.58) (4.02) (8.22) (3.85) ­(13.52) ­(14.90)

Black ­81.17 ­44.76 ­80.82 ­44.71 ­56.53 ­66.94
(19.14) (8.97) (19.06) (8.95) ­(31.02) ­(32.43)

Latino 5.93 2.64 1.23 0.71 3.29 ­22.28
(23.21) (11.01) (22.81) (10.84) ­(39.90) ­(39.34)

NorthCentral ­45.96 ­24.49 ­42.48 ­22.52 ­40.72 ­41.11
(24.85) (11.74) (24.89) (11.75) ­(29.02) ­(32.07)

South ­56.99 ­29.31 ­54.99 ­28.10 ­56.79 ­50.44
(24.54) (11.61) (24.52) (11.60) ­(31.56) ­(35.96)

West ­56.01 ­29.65 ­52.13 ­27.85 ­63.45 ­77.30
(25.08) (11.78) (25.12) (11.76) ­(31.05) ­(35.36)

Urban 32.60 13.06 31.70 12.65 39.88 42.69
(15.71) (7.51) (15.57) (7.43) ­(19.36) ­(21.76)

HSgpa 42.78 24.61 74.22 39.36 43.67 59.40
(41.40) (19.49) (40.77) (19.42) ­(64.64) ­(74.50)

AFQT 1.52 0.99 3.03 1.64 2.32 0.98
(1.35) (0.64) (1.34) (0.64) ­(1.95) ­(2.29)

HSgpa*AFQT 0.25 0.04 ­0.19 ­0.14 0.28 0.35
(0.43) (0.20) (0.42) (0.19) ­(0.56) ­(0.62)

HSgpa*ParentEd ­0.55 ­0.36 ­2.03 ­1.14 ­1.29 ­2.51
(3.95) (1.84) (3.81) (1.80) ­(5.86) ­(6.50)

AFQT*ParentEd ­0.03 ­0.03 ­0.08 ­0.05 ­0.11 ­0.05
(0.08) (0.04) (0.09) (0.04) ­(0.12) ­(0.15)

(s13­s15)*AFQT ­0.16 ­0.27
(0.67) (0.32)

s16*AFQT 1.91 0.65
(1.33) (0.64)

(s13­s15)*HSgpa 0.47 ­3.39
(28.99) (13.57)

s16*HSgpa 46.76 29.88
(47.09) (22.43)

(s13­s15)*ParentEd ­4.01 ­1.15
(4.91) (2.40)

s16*ParentEd 9.97 3.94
(9.85) (4.52)

Constant 223.52 112.62 134.05 72.50 184.34 218.81
(93.60) (44.27) (91.50) (43.26) ­(153.82) ­(172.47)

Observations 1,982 1,982 1,982 1,982 1,352 1,352
R­squared 0.30 0.33 0.30 0.34 0.34 0.33

All Men in NLSY NLSY Cross­section
Dependent variable: PDV of lifetime income post­school

Notes: Robust standard errors in parentheses. Specifications (1) to (4) use all male high school

graduates in the NLSY with non-missing covariates, including the poor white, black, and his-

panic supplemental samples. Specifications (5) and (6) use only male high school graduates in

the cross-section sample.
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Table A- V: Predicted Lifetime Income and Incremental Returns by Years of Continuous Enroll-

ment

Model
Discount

rate 12 13 14 15 16 13 14 15 16
(1) 5% mean 481 516 537 647 809 35 21 110 162

stdev 89 89 89 89 89 0 0 0 0
(2) 10% mean 244 263 276 333 428 19 13 57 95

stdev 39 39 39 39 39 0 0 0 0
(3) 5% mean 473 506 537 649 748 33 31 112 99

stdev 72 66 66 66 151 11 0 0 94
(4) 10% mean 241 259 279 336 401 18 20 58 65

stdev 33 26 26 26 67 10 0 0 47

Men in NELS Sample
Predicted Present Value of

Lifetime Income (,000)
Predicted Incremental

Income Increase (,000)

Notes: Parameters of lifetime income model were estimated using the data from the NLSY

and fitted to men in the NELS sample. See Table A-IV for parameter estimates and model

specifications.

Table A- VI: Fraction of Sample that Return to College After Dropping Out

Fraction Who
Freq 1 2 3 4 5 6 7 Earn BA

12 966 0.00 0.16 0.14 0.13 0.12 0.10 0.09 0.08
13 210 1.00 0.00 0.20 0.24 0.19 0.14 0.08 0.14
14 163 1.00 1.00 0.00 0.29 0.18 0.19 0.10 0.21
15 121 1.00 1.00 1.00 0.00 0.27 0.24 0.15 0.36

16+ 595 1.00 1.00 1.00 1.00 0.50 0.22 0.15 0.87

Years of
Continuous

Educ.
Fraction Who Enroll in Year t
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Figure A- I: Actual vs. Simulated Educational Outcomes

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks,

and choices of each observation is simulated 100 times, assuming individuals follow the choice

models described in the text with parameter values equal to those in specifications (1)-(4) of

Table I.
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Figure A- II: Actual vs. Simulated Outcomes Conditional on Enrollment

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks,

and choices of each observation is simulated 100 times, assuming individuals follow the choice

models described in the text with parameter values equal to those in specifications (1)-(4) of

Table I.
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Figure A- III: Actual vs. Simulated Educational Outcomes, by Parent Education

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks, and

choices of each observation is simulated 100 times, assuming that individuals follow the choice

models described in the text with parameter values equal to those in specifications (1)-(4) of

Table I.
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Figure A- IV: Actual vs. Simulated Educational Outcomes, by Family Income

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks, and

choices of each observation is simulated 100 times, assuming that individuals follow the choice

models described in the text with parameter values equal to those in specifications (1)-(4) of

Table I.
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Figure A- V: Actual vs. Simulated Graduation Rate by 1st Year GPA

Notes: To generate simulated outcomes, the unobserved type, grade and preference shocks, and

choices of each observation is simulated 100 times, assuming that individuals follow the choice

models described in the text with parameter values equal to those in specifications (1)-(4) of

Table I.
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